Defect and Diffusion Forum
Vols. 323-325
Vols. 323-325
Defect and Diffusion Forum
Vol. 322
Vol. 322
Defect and Diffusion Forum
Vol. 321
Vol. 321
Defect and Diffusion Forum
Vols. 319-320
Vols. 319-320
Defect and Diffusion Forum
Vol. 318
Vol. 318
Defect and Diffusion Forum
Vols. 316-317
Vols. 316-317
Defect and Diffusion Forum
Vols. 312-315
Vols. 312-315
Defect and Diffusion Forum
Vol. 311
Vol. 311
Defect and Diffusion Forum
Vols. 309-310
Vols. 309-310
Defect and Diffusion Forum
Vol. 308
Vol. 308
Defect and Diffusion Forum
Vol. 307
Vol. 307
Defect and Diffusion Forum
Vols. 305-306
Vols. 305-306
Defect and Diffusion Forum
Vols. 303-304
Vols. 303-304
Defect and Diffusion Forum Vols. 312-315
Paper Title Page
Abstract: This paper presents the results of an experimental study of heat transfer in a pool boiling evaporator with porous insert. Different types of graphite foams were tested with the phase change coolant FC-72 in a designed thermosyphon. Comparisons between the graphite foams and a solid copper block show that the porous structure enhances pool boiling significantly. The boiling thermal resistance of the tested graphite foams was found to be about 2 times lower than that of the copper block. The bubble formation recorded by a high speed camera indicates that boiling from a graphite foam is more vigorous than from a copper block. The designed thermosyphon with graphite foam insert can remove heat fluxes of up to 112 W/cm2 with the maximum heater temperature maintained below 100°C.
352
Abstract: The change in the wavelength of ultrasonic waves in different medium is due to the elastic properties and the induced particles vibrations in the medium. The study of propagation of ultrasonic wave in liquid systems and solids is now rather well established. Ultrasonic waves are an effective means for examining and analyzing certain physical properties of the materials. It is universally adopted to examine the changes in such physical properties while they occur. In the present study authors are analyzed aqueous solutions of 'Borassus Flabellifier' fruit pulp, which is available in Western part of MP (Dhar-Jhabua Districts) India, at various concentrations have been experimentally determined by using Non Destructive technique (NDT). Some values of acoustical parameters such as intermolecular free length (Lf), Acoustic impedance (Z), and Isentropic compressibility (βs), were computed with the viewpoint importance and applicability in asserting the interactions. These solutions are known for their natural ingredients in pharmaceutical activity as anti-diabetic, pain killing & temperature reducing. In this paper, authors are reported. Ultrasonic wave velocities in a aqueous solution of Borassus Flabellifier fruit pulp at different concentrations using Multi frequency Ultrasonic interferometer Model M-81 S.
358
Abstract: Two hydrothermal treatment processes (DV-HMT and DIC treatment) were investigated on standard maize starch for three processing temperatures; 100, 110 and 120°C. The gravimetric change of starch powder during the treatment was analyzed by a simultaneous water diffusion and starch reaction model. The effective diffusivity coefficient (Deff) and reaction rate constant (k) were estimated by minimizing the error between experimental and analytical results. The values of Deff and k clearly increased with temperature. The degree of starch melting was evaluated for the two treatments using the first-order reaction model as a function of processing time. The results suggest that the absorption process is controlled by water–starch reactivity that induces melting phenomenon of starch crystallites, which progresses when temperature increases. The two hydrothermal treatments considerably differ: DIC being more prone to water absorption as demonstrated by the values of Deff and k.
364
Abstract: Supported cobalt is one of the common catalysts used in Fischer-Tropsch synthesis (FTS). Strong electrostatic adsorption (SEA) was employed to synthesize cobalt nano particles supported on silica. Cobalt nitrate was used as the catalyst precursor and non-porous silica spheres, which were synthesized using the modified Stöber method, were used as a catalyst support. Point of zero charge (PZC) for silica was determined using equilibrium pH at high oxide loading (EpHL) method. The optimum pH was determined by measuring cobalt uptake versus pH. High cobalt uptake at basic pH and low cobalt uptake at acidic pH indicates electrostatic interaction between the cobalt complexes in the precursor solution and the hydroxyl group on the support’s surface. Catalysts prepared at optimum pH were characterized using TPR, XPS and TEM. TPR shows reduction peak at high temperature (587°C) indicating strong interaction between cobalt and silica support. XPS shows presence of Co2+ species on the surface. TEM images of the Co/SiO2 at 5 wt% and 10 wt% cobalt loadings show fairly well-dispersed cobalt oxide nano particles on the spherical silica support with narrow particle size distribution. The findings suggest that SEA was deemed a suitable method to prepare supported cobalt catalysts.
370
Abstract: The titanium alloys-especially Ti-6Al-4V- are attractive materials because of their high specific strength and low density. But these alloys have poor surface properties such as wear and corrosion resistance for many industrial applications. Laser surface nitriding technique, has been the subject of considerable interest as a means of enhancing the surface performance of titanium alloys. In the present paper, the corrosion properties of laser nitrided Ti-6Al-4V alloy that have been reported by several researchers until now is considered. The microstructure changes, phase’s formation and the influence of laser processing parameters on them, in laser nitriding layers of Ti-6Al-4V alloy are investigated in different manners like SEM, TEM, XPS and XRD. At the end of this paper, the effects of laser nitriding on the corrosion behavior of Ti-6Al-4V alloy are reviewed.
376
Abstract: Laser surface hardening is a method used for surface modification without affecting the bulk properties of materials. Due to rapid cooling and little thermal penetration in the surface layer, a homogenous structure and little distortion are usually obtained. When a high power laser irradiates a material surface, a part of the laser energy is absorbed and conducted into the interior of the material. If the absorbed energy is high enough, the material surface will melt and even vaporizes. Consequently the temperature of the process is of promote importance to incorporate an appropriate structural layer. In this regard, a study has been carried out to implement a mathematical modeling method to control the temperature gradient, which affects on the depth of the hardened layer. The model is based on solving the heat transfer equation and such a condition by assuming that the thermo-physical properties of the material are independent of the temperature. To evaluate the application of the proposed model, laser surface hardening was carried out to AISI 1050 steel, using a 1 kW CO2 laser. It was shown that the experimental results obtained are in good agreement with the proposed model.
381
Abstract: Problems of reactive diffusion at the solid phase and melt contact were studied theoretically and experimentally. The main intention was to calculate the time course of the solid phase dissolving in the case of cylindrical dissolving. These calculations were carried out on the assumption for the rate constant of dissolving K = const. In our work we give heed especially to the dominating process, which is the solid metal A dissolved in the melt B. During the dissolving the melt B saturates with the metal A and the process is influenced by convections which are characteristic for the given experimental configuration. A theoretical description of the kinetics of the solid phase dissolving in the melt will be presented for the case of cylindrical dissolving. The aim is to derive a relation for the interface boundary movement c(t) in dependence on time and a time course of growth of the element A concentration in the melt B. There are problems with accurate determination of the interface boundary movement after certain heating times of specimens, when it is observed experimentally, since intermetallic phases create in the original A metal at both the diffusion and cooling and some phases segregate at the solidifying melt cooling. The main intention was an experimental study of the copper dissolving in the tin melt. Experiments aimed to the determination of the Cu wires (diameters from 0.5 to 3.5 mm) dissolution in the solder melt were carried out at various selected temperatures and times. Rapid growth of phases in the metal A and determination of the thickness of layers with these phases pose considerable time demands to X-ray micro-analyses (WDX, EDX) of specimens after their long-time heating.
387
Abstract: ZnO is a wide band gap semiconductor with many applications such as in solar cells, varistors, and other electrical components. The ZnO material was synthesized using a sol-gel method. The material was characterized using X-Ray diffraction (XRD) and scanning electron microscopy (SEM). The material is pure and single phase. Electron conduction in ZnO nanomaterials was done using alternating current (ac) impedance. The frequency ranges of the measurements used were 1x 10-3 Hz to 1x 106 Hz and the ac impedance measurements were done within a temperature range of 60oC to 100oC. Nyquist plots were drawn and bulk resistances were obtained. Subsequently, conductivity values were calculated and the diffusion characteristics were obtained. From further analysis of the conductivities with temperature, the diffusion of electrons in the material was studied. It was found that the conductivity increased with the increase of temperature which meant that the rate of diffusion of the electrons through the materials also increased. An Arrhenius relation was concluded for the electron diffusion in the ZnO nanomaterials.
393
Abstract: The as-cast FSX-414 Co-based superalloy samples were solution treated at 1150oC for 4h and then aged at 980oC for 4h. Specimens for joining were cut from the as-cast ingot and TLP bonding carried out at the same conditions as for the solution and solution+aging treatment, using MBF-30 interlayer. Microstructures were studied for as-cast, heat treated and TLP bonded specimens. These studies showed that the ununiform distributed carbides of MC type in the as-cast specimens replaced by M23C6 type carbides with uniform distribution in the heat treated microstructure. Due to complete isothermal solidification, no eutectic structure in the bond region were wasobserved, but some intermetallics in the diffusion affected zone (DAZ) were observed. Microhardness tests were used to compare the hardness of age hardened specimens with bonded specimens at the same heat treatment condition. Hardness profile also showed a peak in DAZ region in spite of complete isothermal solidification.
399
Abstract: Macrosegregation and porosity formation have been investigated by both a numerical model and by transient directional solidification experiments. The macrosegregation pattern, the theoretical and apparent densities are presented as a function of the casting length. X-ray fluorescence spectrometry was used to determine the macrosegregation profiles. The measurement of microporosity was performed using pyknometry analysis. The local composition along an Al-9wt%Si-3wt%Cu casting length was used as an input parameter for simulations of microporosity evolution. The results have demonstrated that the presence of Si in the alloy composition has inhibited the inverse copper segregation, which is a typical result of directionally solidified Al-Cu castings. The numerically simulated trend is in good conformity with the experimental scatter.
405