Electrical Behaviour of MoS2 Based Staggered Heterostructure under Magnetic Field

Article Preview

Abstract:

Heterostructures are important for various electrical, optical, and magneto-transport applications. In the present work, MoS2/ZnO heterostructures are successfully grown by magnetron sputtering followed by annealing of ZnO thin films. After annealing, ZnO is again coated with Mo by using the same technique. ZnO-Mo stack is further sulfurized to convert Mo into MoS2. X-ray diffraction (XRD) showed the structural analysis of ZnO, MoS2, and MoS2/ZnO heterostructures with polycrystalline nature. Scanning electron microscopy (SEM) also supports the granular morphology of ZnO, MoS2, and MoS2/ZnO films. Energy dispersive X-ray analysis (EDX) confirms the presence of necessary elements i.e., Zn, Mo, S, O, and Si. Further, the impact of the magnetic field on the current-voltage (I-V) behavior of MoS2/ZnO heterostructures, reveals insights into their magneto-resistive capabilities.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-14

Citation:

Online since:

December 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. Liu, Y. Wei, W. Ouyang, J. Zhang, F. Luo, Reversible electromechanical manipulation of domain wall in trilayer graphene via ferroelectric sliding, Mater. Horiz. (2025).

DOI: 10.1039/d5mh00921a

Google Scholar

[2] K. Kanon, S.S. Sharif, A. Irfan, A. Sharif, Inorganic film materials for flexible electronics: A brief overview, properties, and applications, Eng. rep. 6 (2024) e13006.

DOI: 10.1002/eng2.13006

Google Scholar

[3] D. Panchal, A. Sharma, S. Pal, Engineered MoS2 nanostructures for improved photocatalytic applications in water treatment, Mater. Today Sustain. 21 (2023) 100264.

DOI: 10.1016/j.mtsust.2022.100264

Google Scholar

[4] K. Zollner, S.M. João, B.K. Nikolić, J. Fabian, Twist- and gate-tunable proximity spin-orbit coupling, spin relaxation anisotropy, and charge-to-spin conversion in heterostructures of graphene and transition metal dichalcogenides, Phys. Rev. B 108 (2023) 235166.

DOI: 10.1103/physrevb.108.235166

Google Scholar

[5] J. SAHOO, S. MALLICK, Study of ZnO Nanorods Synthesized by Microwave Method, Nanoscale 1 (2025) 4.

Google Scholar

[6] C. Zhang, Q. Tu, L.F. Francis, U.R. Kortshagen, Band gap tuning of films of undoped zno nanocrystals by removal of surface groups, Nanomaterials 3 (2022) 565.

DOI: 10.3390/nano12030565

Google Scholar

[7] A. Tahir, M.A. Bujran, B. Want, Exploration of the optical characteristics in sol-gel synthesized europium-doped zinc oxide thin films for potential optoelectronic use: a comprehensive characterization approach, Phys. Scr. 99 (2024) 065921.

DOI: 10.1088/1402-4896/ad42e1

Google Scholar

[8] S. Lee, TH Kim, S.J. Kim, S.Y. Lee, Tunable Performance of Amorphous In-Zn-O Thin Film Transistors via Silicon Doping for Logic Circuit Integration, Silicon 1 (2025).

DOI: 10.1007/s12633-025-03359-8

Google Scholar

[9] M. Nemiwal, T.C. Zhang, D. Kumar, Recent progress in g-C3N4, TiO2 and ZnO based photocatalysts for dye degradation: Strategies to improve photocatalytic activity, Sci. Total Environ. 767 (2021) 144896.

DOI: 10.1016/j.scitotenv.2020.144896

Google Scholar

[10] C.H. Jiang, C.B. Yao, L.Y. Wang, X.Wang, Z.M. Wang, H.T. Yin, Interface engineering of modified ZnO@ MoS2 heterostructure to efficiently enhance charge transfers and carrier regulation, J. Lumin. 255 (2023) 119546.

DOI: 10.1016/j.jlumin.2022.119546

Google Scholar

[11] W. Luo, M. Abdulwahab, X. Liu, H. Wang, 5 2 fractional quantum Hall state in GaAs with Landau level mixing, Phys. Rev. B 110 (2024) 085428.

Google Scholar

[12] L. Chen, C. Chen, Z. Yang, S. Li, C. Chu, B. Chen, Simultaneously Tuning Band Structure and Oxygen Reduction Pathway toward High-Efficient Photocatalytic Hydrogen Peroxide Production Using Cyano-Rich Graphitic Carbon Nitride, Adv. Funct. Mater. 31 (2021) 2105731.

DOI: 10.1002/adfm.202105731

Google Scholar

[13] Z. Luo, P. Rong, Z. Yang, J. Zhang, X. Zou, Q. Yu, Preparation and application of co-doped zinc oxide: a review, Mol. 29 (2024) 3373.

DOI: 10.3390/molecules29143373

Google Scholar

[14] C.H. Tsai, R. Manduchi, Robust Indoor Pedestrian Backtracking Using Magnetic Signatures and Inertial Data, IPIN (2024) 1-6.

DOI: 10.1109/ipin62893.2024.10786145

Google Scholar

[15] E. C. Ahn, 2D materials for spintronic devices, npj 2D Mater. Appl. 4 (2020) 17.

DOI: 10.1038/s41699-020-0152-0

Google Scholar

[16] A.I. Vorobyova, D.I. Tishkevich, E.A. Outkina, A.A. Khodin, Formation of nickel-based composite magnetic nanostructures for microelectronics and nanodiagnostics devices, Russ. Microelectron. 54 (2025) 44-61.

DOI: 10.1134/s1063739725600177

Google Scholar

[17] H. Zhang, G. Liu, G. Zhang, N. Li, Y. Lu, J. Song, G. Zhang, Ultrasound-induced rapid electron movement on ZnO/MoS2 heterojunction for high performance tumor therapy, Inorg. Chem. Commun. 170 (2024) 113519.

DOI: 10.1016/j.inoche.2024.113519

Google Scholar

[18] C. De Soricellis, C. Amante, P. Russo, R.P. Aquino, P. Del Gaudio, Prilling as an effective tool for manufacturing submicrometric and nanometric PLGA particles for controlled drug delivery to wounds: stability and curcumin release, Pharmaceutics 17 (2025) 129.

DOI: 10.3390/pharmaceutics17010129

Google Scholar

[19] M. Mohammadi, G. Mansouri, Synthesis and characterization of a hercynite-supported copper (II) complex based on 1, 10-phenanthroline-5, 6-dione and acetylacetone building blocks and its catalytic application in annulation reactions, Langmuir 40 (2024) 22773-86.

DOI: 10.1021/acs.langmuir.4c02783

Google Scholar

[20] L. Banupriya, R.N. Emerson, G.J. Bala, Low cost Ni-based electrodeposited pn-junction thermoelectric device for thermoelectric sensor application, Solid State Electron. 225 (2025) 109065.

DOI: 10.1016/j.sse.2025.109065

Google Scholar

[21] B. Ünveroğlu Abdioğlu, Morphological, structural, and electrochemical properties of ZnO-and Ni-doped ZnO nanocrystals formed using different reducing agents in the chemical co-precipitation technique, J. Mater. Sci. 59 (2024) 17367-81.

DOI: 10.1007/s10853-024-10231-4

Google Scholar

[22] T.T. Phan, O.K. Le, Y.N. Duong, N.Y. Le, T.Q. Vo, O.H. Vo, T.D. Ung, T.B. Phan, V.C. Tran, A.T. Pham, Thickness-dependent structure and transparent conducting properties of sputtered Ta lightly-doped ZnO films, Opt. Mater. 164 (2025) 117045.

DOI: 10.1016/j.optmat.2025.117045

Google Scholar

[23] S. Hu, C. Li, K. Li, W. Teng, F. Li, P. Zhang, H. Wang, Advanced mesoporous adsorbents and catalysts for CO 2, NO x, and VOC removal: mechanisms and applications, Environ. Sci. Nano 11 (2024) 4666-91.

DOI: 10.1039/d4en00621f

Google Scholar

[24] K. Nguyen-Ba, J.R. Vargas-García, A. Manzo-Robledo, Alternative synthesis of structurally defective MoS2 nanoflakes for efficient hydrogen evolution reaction, Mater. Sci. Eng. B 256 (2020) 114539.

DOI: 10.1016/j.mseb.2020.114539

Google Scholar

[25] M. Demura, M. Nagao, C.H. Lee, Y. Goto, Y. Nambu, M. Avdeev, Y. Masubuchi, T. Mitsudome, W. Sun, K. Tadanaga, A. Miura, Nitrogen-rich molybdenum nitride synthesized in a crucible under air, Inorg. Chem. 63 (2024) 4989-96.

DOI: 10.1021/acs.inorgchem.3c04345

Google Scholar

[26] F. Laidoudi, C. Caliendo, F. Kanouni, S. Amara, Surface acoustic wave characteristics in ZnO thin films deposited on different Silicon-based multilayered substrates, Appl. Phys. A 131 (2025) 456.

DOI: 10.1007/s00339-025-08565-0

Google Scholar

[27] O. Dos, S. Cavdar, Impact of Diverse Nanostructure Forms of NiCo2O4 Bulk Ceramics on Electrical Properties, ACS omega 10 (2025) 17875-86.

DOI: 10.1021/acsomega.5c00708

Google Scholar

[28] T. Sindhu, M. Kumaresavanji, A.R. Xavier, K. Sofiya, M. Baneto, K. Ravichandran, S. Ravi, A.T. Ravichandran, Actual A-site Gd incorporation into NdFeO3 perovskite lattice to induce transition in magnetic ordering for spintronic applications, Ceram. Int. 51 (2025) 14260-7.

DOI: 10.1016/j.ceramint.2025.01.262

Google Scholar

[29] A.V. Okotrub, G.I. Semushkina, A.A. Vorfolomeeva, A.V. Gusel'nikov, L.G. Bulusheva, O.V. Sedelnikova, Investigating the Interaction of Encapsulated Sulfur and Phosphorus Chains with Carbon Nanotubes Using X-Ray Emission Spectroscopy, J. Struct. Chem. 66 (2025) 678-88.

DOI: 10.1134/s0022476625040043

Google Scholar

[30] E. Nolot, S. Cadot, F. Martin, P. Hönicke, C. Zech, B. Beckhoff, In-line characterization of ultrathin transition metal dichalcogenides using X-ray fluorescence and X-ray photoelectron spectroscopy, Spectrochim. Acta B, At. Spectrosc. 166 (2020) 105788.

DOI: 10.1016/j.sab.2020.105788

Google Scholar

[31] Q. Gao, Y. Dai, C. Li, K. Wang, X. Li, The role of oxygen vacancies in enhancement of photocatalysis and ferromagnetism of (Mn, Co) co-doped ZnO nanoparticles, Mater. Sci. Semicond. Process. 181 (2024) 108637.

DOI: 10.1016/j.mssp.2024.108637

Google Scholar

[32] M.S. Khan, B. Zou, S. Yao, B. Zheng, J. Cao, W. Huang, Z. Zhou, A.S. Abdalla, Carriers induced ferromagnetism in Co (II)-doped ZnO monolayers and their optical properties: First principles calculations, Chin. J. Phys. 89 (2024) 601.

DOI: 10.1016/j.cjph.2023.10.020

Google Scholar

[33] J. Lu, Y. Xu, J. Cui, P. Zhang, C. Zhou, H. Singh, S. Zhang, L. You, J. Hong, Room temperature photosensitive ferromagnetic semiconductor using MoS2, npj Spintronics 2 (2024) 7.

DOI: 10.1038/s44306-024-00009-4

Google Scholar

[34] J. Ding, P. Zhao, H. Chen, H. Fu, Ultraviolet photodetectors based on wide bandgap semiconductor: a review, Appl. Phys. A 130 (2024) 350.

DOI: 10.1007/s00339-024-07501-y

Google Scholar

[35] M.A. Wahba, Synergistic Doping of ZnO Nanoparticles with Zr and Mn for Enhanced Room-Temperature Ferromagnetism and Optical Modulation, Ceram. Int. (2025).

DOI: 10.1016/j.ceramint.2025.07.168

Google Scholar

[36] T. Aliyar, H. Ma, R. Krishnan, G. Singh, B.Q. Chong, Y. Wang, I. Verzhbitskiy, C.P. Yu Wong, G. Johnson Goh, Z.X. Shen, T.S. Koh, Symmetry Breaking and Spin–Orbit Coupling for Individual Vacancy-Induced In-Gap States in MoS2 Monolayers, Nano Lett. 24 (2024) 2142.

DOI: 10.1021/acs.nanolett.3c03681

Google Scholar

[37] J. Xu, Q. Zheng, J. Zhao, Spontaneous polarization dynamics in V-doped monolayer MoS2, Comput. Mater. Today 1 (2024)100004.

DOI: 10.1016/j.commt.2024.100004

Google Scholar

[38] X. Wang, K. Kim, B.K. Derby, T. McGuckin, G.A. Calderón, M.T. Pettes, J. Hwang, J. Kim, J. Park, A. Chen, K. Kang, Structural alignment of ZnO columns across multiple monolayer MoS 2 layers as compliant substrates, Nanoscale 16 (2024) 11156.

DOI: 10.1039/d4nr00724g

Google Scholar

[39] H.Y. Wang, X.Y. Guo, B.Y. Chi, Y. Zhu, Y. Yan, X.F. Han, Large Magnetoresistance and Reconfigurable Spin Filtering Efficiency Induced by Nonvolatile Electrical Control of Magnetism in van der Waals Sc2CO2/Bilayer-NiCl2/Sc2CO2 Multiferroic Heterostructures, J. Phys. Chem. C. (2025).

DOI: 10.1021/acs.jpcc.5c01755.s001

Google Scholar

[40] Z. Ma, P. Yan, W. Liu, W. Wu, Q. Tian, G. Chen, Q. Xu, 2D Amorphous Heterointerface Engineering for Enhanced Ferromagnetism in MoO3–x/Graphene Oxide, J. Phys. Chem. C. 129 (2025) 9903-11.

DOI: 10.1021/acs.jpcc.5c01629

Google Scholar

[41] X. Ma, J. Wu, L. Huang, X. Shi, R .Li, M. Chang, Y. Lu, B. Xiang, Unconventional Magnetic and Magneto-transport Properties in a Canted Antiferromagnet Fe3SnSb, Precis. chem. (2025).

DOI: 10.1021/prechem.4c00106.s001

Google Scholar

[42] M.K. Akbari, Y. Cui, C. Detavernier, S. Zhuiykov, Emergent multiferroicity in two-dimensional electron gas of complex oxides for FET-based artificial synaptic junctions, Mater. Horiz. (2025).

DOI: 10.1039/d5mh00937e/v2/response1

Google Scholar

[43] S. Cuccurullo, F. Maspero, O. Koplak, G. Pavese, E. Albisetti, M. Cantoni, R. Bertacco, Impact of minor hysteresis loops in integrated inductors with ferromagnetic films, Appl. Phys. Lett. 11 (2023) 122.

DOI: 10.1063/5.0127390

Google Scholar

[44] B. Wang, J. Ning, J. Zhang, D. Wang, Y. Hao, Band alignments tuned by spontaneous polarization in two-dimensional MoS2/GaN van der Waals heterostructures, Physica E Low Dimens. Syst. Nanostruct. 143 (2022) 115360.

DOI: 10.1016/j.physe.2022.115360

Google Scholar

[45] G.X. Chen, Q. Zhang, W.L. Qu, L. Zhang, D.D. Wang, J.M. Zhang, A type-II MoS2/GaN van der Waals heterostructure with tunable electronic and optical properties based on first principles, Mater. Today Commun. 42 (2025) 111568.

DOI: 10.1016/j.mtcomm.2025.111568

Google Scholar