Photoresponse Amplification of Silicon Carbide Ultraviolet Photodetector via In Situ Nitrogen Doping

Article Preview

Abstract:

High-performance ultraviolet photodetectors require high sensitivity, fast response, strong radiation resistance, and high on/off ratio. This study investigates the impact of in-situ nitrogen doping on the performance of Silicon Carbide ultraviolet photodetectors (SiC-UVPDs). The SiC-UVPD devices demonstrated high sensitivity, fast response, low dark current, and good stability. Notably, the sensitivity of the devices increased with higher nitrogen doping, reaching 1.94 × 10⁵ % for the 8-sccm nitrogen-doped SiC-UVPD under 254 nm UV light illumination at 20 V - a 51% improvement compared to undoped SiC-UVPDs. Furthermore, nitrogen doping did not compromise the devices' response speed. Consequently, the combination of high sensitivity, fast response, low-cost fabrication, and robust radiation resistance positions SiC-UVPDs as promising candidates for high-performance ultraviolet photodetectors, particularly in harsh environment applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

47-57

Citation:

Online since:

December 2025

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Ding, P. Zhao, H. Chen et al., Ultraviolet photodetectors based on wide bandgap semiconductor: a review, Appl. Phys. A 130(2024) 350

DOI: 10.1007/s00339-024-07501-y

Google Scholar

[2] M.S.M. Abutawahina, A.A.A. Mohammed, N.A. Hamzah et al., Photoresponse characteristics of bulk gallium nitride schottky barrier metal-semiconductor-metal ultraviolet photodetectors, Sensors & Actuators A Phys. 380 (2024) 116058

DOI: 10.1016/j.sna.2024.116058

Google Scholar

[3] T. Sugeta, T. Urisu, S. Sakata, Y. Mizushima, Metal-semiconductor- metal photodetector for high-speed optoelectronic circuits, Jpn. J. of Appl. Phys. 19 (1980) 459

DOI: 10.7567/JJAPS.19S1.459

Google Scholar

[4] P.R. Berger, Metal-semiconductor-metal photodetectors, in: Testing, Reliab. Appl. Optoelectron. Devices. SPIE 4285 (2001) 198-207

DOI: 10.1117/12.426888

Google Scholar

[5] F. Cao, Y. Liu, M. Liu et al., Wide Bandgap Semiconductors for Ultraviolet Photodetectors: Approaches, Applications, and Prospects, Research 7 (2024) 0385. https://doi.org/

DOI: 10.34133/research.0385

Google Scholar

[6] H. Mousa, M.A. Yildirim, K. Teker, Performance Enhancement of the 3C-SiC Thin Film UV Photodetector via Gold Nanoparticles, Semicond. Sci. Technol. 34 (2019) 095002

DOI: 10.1088/1361-6641/ab30c0

Google Scholar

[7] R. Zhang, G. Wang, Q. Zhang et al., Recent progress in GaN-based ultraviolet photodetectors, J. Mater. Chem. C 13 (2025) 10972. https://doi.org/

DOI: 10.1039/d5tc00364d

Google Scholar

[8] K. Teker, Low-power operating aluminum nitride nanowire-film ultraviolet photodetector, J. Nano Res. 74 (2022) 25-34

DOI: 10.4028/p-156hhl

Google Scholar

[9] N. Kumar, A. Srivastava, Green photoluminescence and photoconductivity from screen-printed Mg doped ZnO films, J. Alloys Compd. 735 (2018) 312-318

DOI: 10.1016/j.jallcom.2017.11.024

Google Scholar

[10] M. Dutta, T. Ghosh, D. Basak, N doping and Al-N co-doping in sol-gel ZnO films: Studies of their structural, electrical, optical, and photoconductive properties, J. Electron. Mater. 38 (2009) 2335-2342

DOI: 10.1007/s11664-009-0908-y

Google Scholar

[11] C. Ravidhas, B. Anitha, A. Moses et al., Effect of nitrogen doped titanium dioxide (N-TiO2) thin films by jet nebulizer spray technique suitable for photoconductive study, J. Mater. Sci. Mater. Electron. 26 (2015) 3573-3582

DOI: 10.1007/s10854-015-2871-0

Google Scholar

[12] D.P. Chaudhari, M. Ombaba, J.Y. Oh et al., Solar Blind Photodetectors Enabled by Nanotextured β-Ga2O3 Films Grown via Oxidation of GaAs Substrates, IEEE Photonics J. 9 (2017) 1-7

DOI: 10.1109/JPHOT.2017.2688463

Google Scholar

[13] F. La Via, D. Alquier, F. Giannazzo, T. Kimoto, P. Neudeck, H. Ou, A. Roncaglia, S.E. Saddow, S. Tudisco, Emerging SiC Applications beyond Power Electronic Devices, Micromachines 14 (2023) 1200

DOI: 10.3390/mi14061200

Google Scholar

[14] J. Fan, P.K.H. Chu, Silicon Carbide Nanostructures: Fabrication, Structure, and Properties, Springer, 2014

DOI: 10.1007/978-3-319-08726-9

Google Scholar

[15] N. Naderi, M.R. Hashim, Porous-shaped silicon carbide ultraviolet photodetectors on porous silicon substrates, J. Alloys Compd. 552 (2013) 356-362

DOI: 10.1016/j.jallcom.2012.11.085

Google Scholar

[16] L. Wu, S. Guan, B. Zhou et al., Plasma-induced N doping and carbon vacancies in a self-supporting 3C-SiC photoanode for efficient photoelectrochemical water oxidation, J. of Mater. Chem. A 12 (2024) 19201-19211

DOI: 10.1039/D4TA02612H

Google Scholar

[17] A. Csóré, H.J. von Bardeleben, J.L. Cantin, A. Gali, Characterization and formation of NV centers in 3C, 4H, and 6H SiC: An ab initio study, Phys. Rev. B 96 (2017) 085204

DOI: 10.1103/PhysRevB.96.085204

Google Scholar

[18] H.-Y. Chen et al., Realization of a self-powered ZnO MSM UV photodetector with high responsivity using an asymmetric pair of Au electrodes, J. Mater. Chem. C 2 (2014) 9689-9694

DOI: 10.1039/C4TC01839G

Google Scholar

[19] K. Teker, H. Mousa, Low-Power Operating 3C-SiC Ultraviolet Photodetector for Elevated Temperature Applications, J. Electron. Mater. 49 (2020) 3813-3818

DOI: 10.1007/s11664-020-08097-8

Google Scholar

[20] A. Sciuto, F. Roccaforte, S. Di Franco, V. Raineri, Schottky barrier lowering in 4H-SiC Schottky UV detector, Mater. Sci. Forum 600-603 (2009) 1215-1218

DOI: 10.4028/www.scientific.net/MSF.600-603.1215

Google Scholar

[21] W.J. Moore, J.A. Freitas, P.J. Lin-Chung, Donors in cubic silicon carbide, Solid State Commun. 93 (1995) 389-392.

DOI: 10.1016/0038-1098(94)00804-3

Google Scholar

[22] M.H. Mamat, Z. Khusaimi, M.Z. Musa, M.F. Malek, M. Rusop, Fabrication of ultraviolet photoconductive sensor using a novel aluminum-doped zinc oxide nanorod-nanoflake network thin film prepared via ultrasonic-assisted sol-gel and immersion methods, Sensors & Actuators A Phys. 171 (2011) 241-247

DOI: 10.1016/j.sna.2011.07.002

Google Scholar

[23] Y.Z. Chiou, The substrate-induced effect of GaN MSM photodetectors on silicon substrate, Semicond. Sci. Technol. 23 (2008) 125007

DOI: 10.1088/0268-1242/23/12/125007

Google Scholar

[24] Q. Zhao, D. Wang, L. Peng, Y. Lin, M. Yang, T. Xie, Surface photovoltage study of photogenerated charges in ZnO nanorods array grown on ITO, Chem. Phys. Lett. 434 (2007) 96-100

DOI: 10.1016/j.cplett.2006.11.103

Google Scholar

[25] R. Pandian, G. Natarajan, N.G.K. Dhaipule, A.K. Prasad, M. Kamruddin, A.K. Tyagi, Types of nitrogen incorporation in reactively sputtered titania thin films: Influence on UV–visible, photocatalytic and photoconduction properties, Thin Solid Films 616 (2016) 466-476

DOI: 10.1016/j.tsf.2016.08.067

Google Scholar

[26] K. Teker, I.M. Tamay, Photoinduced polarity shift of in-situ nitrogen-doped silicon carbide nanowire phototransistors, Optics & Laser Technology 170 (2024) 110236

DOI: 10.1016/j.optlastec.2023.110236

Google Scholar

[27] A. Rajan, H.K. Yadav, V. Gupta, M. Tomar, Fast Response ultra-violet photodetectors based on Sol gel derived Ga-doped ZnO, Procedia Eng. 94 (2014) 44-51

DOI: 10.1016/j.proeng.2013.11.046

Google Scholar

[28] V. Bhatt, M. Kumar, J. Kim, H.J. Chung, J.H. Yun, Persistent photoconductivity in Al-doped ZnO photoconductors under air, nitrogen and oxygen ambiance: Role of oxygen vacancies induced DX centers, Ceram. Int. 45 (2019) 8561-8570

DOI: 10.1016/j.ceramint.2019.01.174

Google Scholar

[29] M.M.H. Farooqi, R.K. Srivastava, Enhanced UV-vis photoconductivity and photoluminescence by doping of samarium in ZnO nanostructures synthesized by solid state reaction method, Optik 127 (2016) 3991-3998

DOI: 10.1016/j.ijleo.2016.01.074

Google Scholar

[30] L. Zheng, F. Teng, Z. Zhang, B. Zhao, X. Fang, Large scale highly efficient and self-powered UV photodetectors enabled by all-solid-state n-TiO2 nanowell/p-NiO mesoporous nanosheet heterojunctions, J. Mater. Chem. C. 4 (2016) 10032-10039

DOI: 10.1039/c6tc03830a

Google Scholar