[1]
Q. Shi, J. Wu, Review on sulfur compounds in petroleum and its products: state-of-the-art and perspectives, Energy Fuels 35(18) (2021) 14445-14461.
DOI: 10.1021/acs.energyfuels.1c02229
Google Scholar
[2]
M. Zarei, M. Eskandarzade, A. Babapoor, A. Seyfaee, A review of recent advances and applications of inorganic coating for oil and gas pipe systems, Surf. Coat. Technol. 494 (2024) 131339.
DOI: 10.1016/j.surfcoat.2024.131339
Google Scholar
[3]
L. Wang, J. Guo, C. Li, R. Xiong, X. Chen, X. Zhang, Advancements and future prospects in in-situ catalytic technology for heavy oil reservoirs in China, A review. Fuel 374 (2024) 132376.
DOI: 10.1016/j.fuel.2024.132376
Google Scholar
[4]
G.Z. Deng, X.D. Tang, X.J. Ma, S.H. Ling, F.R. Fei, Q.B. Mao, J.J. Li, Effects of different catalytic liquefaction of bio-oil on hydrothermal upgrading of heavy oil: A comprehensive analysis of composition, desulfurization and hydrogenation, J. Analyt. Appl. Pyroly. 179 (2024) 106455.
DOI: 10.1016/j.jaap.2024.106455
Google Scholar
[5]
X. Zhang, J. Guo, D. Fei, L. Wang, Z. Peng, J. Li, J. Dong, Polymer surfactants as viscosity reducers for ultra-heavy oil: Synthesis and viscosity reduction mechanism, Fuel 357 (2024) 129871.
DOI: 10.1016/j.fuel.2023.129871
Google Scholar
[6]
Y. Liu, J. Bai, P. Guo, W. Zhang, L. Zhong, C. Lyu, et al. Experimental study on water-in-heavy-oil droplets stability and viscosity variations in the dilution process of water-in-heavy-oil emulsions by light crude oil, Energies 17(2) (2024) 332.
DOI: 10.3390/en17020332
Google Scholar
[7]
B. Wang, Y. Chang, R. Ma, Q. Zhang, W. Wang, Study on optimized culture of microbial strains and their ability in wax removal and viscosity reduction of paraffin-based crude oil, Fuel 369 (2024) 131697.
DOI: 10.1016/j.fuel.2024.131697
Google Scholar
[8]
X. He, H. Liu, X. Liu, W. Jiang, W. Zheng, H. Zhang, et al. Experimental study and numerical simulation of heavy oil viscosity reduction device based on jet cavitation, Petroleum Sci. Technol. 42(25) (2024) 4745-4767.
DOI: 10.1080/10916466.2023.2233558
Google Scholar
[9]
Y. Wang, L. Zhang, R. Lin, X. Han, K. Xie, C. Huang, et al. Experimental and mechanistic study on the effect of active components and calcination temperatures on biochar-based catalysts for catalyzing heavy oil viscosity reduction, Geoenergy Sci. Eng. 240 (2024) 213078.
DOI: 10.1016/j.geoen.2024.213078
Google Scholar
[10]
Z. Shen, X. Fang, W. He, L. Zhang, Y. Li, G. Qi, et al. Enhanced aquathermolysis of water–heavy oil–ethanol catalyzed by B@Zn(II)L at low temperature, Molecules 29(9) (2024) 2057.
DOI: 10.3390/molecules29092057
Google Scholar
[11]
E.S. Al-Farraj, E.A. Abdelrahman, Efficient photocatalytic degradation of congo red dye using facilely synthesized and characterized MgAl2O4 nanoparticles, ACS Omega 9(4) (2024) 4870-4880.
DOI: 10.1021/acsomega.3c08485
Google Scholar
[12]
V.P. Chitra, P. Vasantharani, G. Sivakumar, M. Santhamoorthy, L. Guganathan, S. Devanesan, et al. Preparation and characterization of MgAl2O4 nanoparticles by hydrothermal method and their photocatalytic and antibacterial activity applications, Ceram. Int. 50(18) (2024) 32737-32747.
DOI: 10.1016/j.ceramint.2024.06.083
Google Scholar
[13]
X. Li, Photocatalytic activity of magnesium aluminate for degradation of petroleum waste on water surface driven by sunlight, Russ. J. Phys. Chem. A 97(14) (2023) 415-3425.
DOI: 10.1134/s0036024424010278
Google Scholar
[14]
R. Ianoş, R. Lazău, P. Barvinschi, Synthesis of Mg1-xCoxAl2O4 blue pigments via combustion route, Adv. Powder Technol. 22(3) (2011) 396-400.
DOI: 10.1016/j.apt.2010.06.006
Google Scholar
[15]
W. Saengsui, T. Tangkittimasak, M. Suwan, N. Sangwong, C. Tangon, N. Chanlek, P. Rakkwamsuk, S. Supothina, W. Meevasana, Electronic and phononic absorption contributions to near-infrared reflectance of Mg1-xCoxAl2O4, Zn1-xCoxFe2O4 and CrxSbxTi1-2xO2 pigments, J. Alloy. Compd. 939 (2023) 168695.
DOI: 10.1016/j.jallcom.2022.168695
Google Scholar
[16]
E.A. Asl, M. Haghighi, A. Talati, A. Enhanced simulated sunlight-driven magnetic MgAl2O4-AC nanophotocatalyst for efficient degradation of organic dyes, Sep. Purif. Technol. 251 (2020) 117003.
DOI: 10.1016/j.seppur.2020.117003
Google Scholar
[17]
T.V. Nitha, S. Britto, MgAl2O4 nanospinel: Green synthesis, characterization and effective heterogeneous catalyst for the photocatalytic degradation of carbol fuchsin dye and synthesis of 2-aryl substituted benzoxazole derivatives, Inorg. Chem. Commun. 159 (2024) 111776.
DOI: 10.1016/j.inoche.2023.111776
Google Scholar
[18]
W.B. Ameur, B. Chouchene, R. Schneider, A. Hajjaji, M. Zouaoui, Biosynthesis of MgAl2O4 nanoparticles and their use as photocatalyst for sunlight-driven degradation of amido-black, Solid State Commun. 404 (2025) 116044.
DOI: 10.1016/j.ssc.2025.116044
Google Scholar
[19]
S. Sanjabi, A. Salehirad, MgAl2O4/CoFe2O4/Zeolite A magnetic ceramic nanocomposite for efficacious elimination of Methylene blue from aqueous solutions: composition influence, Res. Chem. Intermed. (2025) 1-29
DOI: 10.1007/s11164-025-05679-1
Google Scholar
[20]
M. Taneja, J. Kumar, Characterization of natural and synthetic colorants in food industries: Benefits, impact, and applications, AIP Conf. Proc. 2807 (2025) 060008.
DOI: 10.1063/5.0273029
Google Scholar
[21]
S. Tyagi, R.T. Kapoor, R. Singh, M.P. Shah, Insights on microbial enzymes mediated biodegradation of Azo dyes: a sustainable strategy for environment clean up, Bioremediat. J. (2025) 1-43
DOI: 10.1080/10889868.2025.2498695
Google Scholar
[22]
R.A. Kristanti, W.J. Ngu, A. Yuniarto, T. Hadibarata, Rhizofiltration for removal of inorganic and organic pollutants in groundwater: a review, Biointerface Res. Appl. Chem. 11 (2021) 12326-12347.
DOI: 10.33263/briac114.1232612347
Google Scholar
[23]
Q. Zhu, J. Song, Z. Liu, K. Wu, X. Li, Z. Chen, H. Pang, Photothermal catalytic degradation of textile dyes by laccase immobilized on Fe3O4@SiO2 nanoparticles, J. Colloid Interf. Sci. 623 (2022) 992-1001.
DOI: 10.1016/j.jcis.2022.05.083
Google Scholar
[24]
C. Zhang, H. Li, X. Yang, X. Tan, C. Wan, X. Liu, Characterization of electrodes modified with sludge-derived biochar and its performance of electrocatalytic oxidation of azo dyes, J. Environ. Manag. 324 (2022) 116445.
DOI: 10.1016/j.jenvman.2022.116445
Google Scholar
[25]
Z. Wu, B. Fan, L. Zhang, Y. Yao, S. Hong, H. Yu, Y. Jia, Strongly enhanced piezoelectric-catalysis of ZnSnO3/graphite hybrid materials for dye wastewater decomposition, Ceram. Int. 49(18) (2023) 29614-29621.
DOI: 10.1016/j.ceramint.2023.06.180
Google Scholar
[26]
Q. Wu, G. Feng, F. Jiang, X. Zhang, Y. Xu, J. Liu, et al. Insight into enhanced adsorption of Congo red by petal-like MgAl2O4: Effect of dehydroxylation, J. Phys. Chem. Solids 197 (2025) 112398.
DOI: 10.1016/j.jpcs.2024.112398
Google Scholar
[27]
E.A. Asl, M. Haghighi, A. Talati, Enhanced solar-driven photocatalytic degradation of organic dyes using sono-dispersed mesoporous MgAl2O4 over carbon based materials, J. Taiwan Inst. Chem. Eng. 162 (2024) 105627.
DOI: 10.1016/j.jtice.2024.105627
Google Scholar
[28]
S. Ahmad, T. Hussain, U. Shuaib, F.E. Mubarik, A. Yasin, I. Shakir, Facile fabrication of MgAl2O4/MWCNT nanocomposite for efficient and stable solar-driven degradation of organic dye, Phys. Scripta 99(6) (2024) 0659a1.
DOI: 10.1088/1402-4896/ad4b6e
Google Scholar
[29]
C. Chen, Q. Li, Q. Zhang, Y. Li, Y. Wei, S. Wang, Artificial neural network algorithm for predict the photocatalytic activity of the Mn co-doped MgAl2O4: Ce composite photocatalyst. In 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP) (pp.1-5). IEEE.
DOI: 10.1109/ICSIDP47821.2019.9173359
Google Scholar
[30]
S. Wang, H. Gao, C. Chen, Y. Wei, X. Zhao, Irradiation assisted polyacrylamide gel route for the synthesize of the Mg1-xCoxAl2O4 nano-photocatalysts and its optical and photocatalytic performances, J. Sol-Gel Sci. Technol. 92 (2019) 186-199.
DOI: 10.1007/s10971-019-05062-8
Google Scholar
[31]
S. Parida, B.B. Palei, P. K. Srivastava, Synthesis of rGO-reinforced MgAl2O4 spinel composites by solid-state powder route mechanism: A comparative analysis between non-reinforced and rGO-reinforced spinel composites, Ceram. Int. 50(12) (2024) 21583-21600.
DOI: 10.1016/j.ceramint.2024.03.271
Google Scholar
[32]
X. Yu, S. Wang, Y. Zhang, X. Yu, H. Gao, H. Yang, et al. Utilization of stable and efficient high‐entropy (Ni0.2Zn0.2Mg0.2Cu0.2Co0.2)Al2O4 catalyst with polyvalent transition metals to boost peroxymonosulfate activation toward pollutant degradation, Small 21 (2025) 2410819.
DOI: 10.1002/smll.202410819
Google Scholar
[33]
J. Li, S. Wang, G. Sun, H. Gao, X. Yu, S. Tang, et al. Facile preparation of MgAl2O4/CeO2/Mn3O4 heterojunction photocatalyst and enhanced photocatalytic activity, Mater. Today Chem. 19 (2021) 100390.
DOI: 10.1016/j.mtchem.2020.100390
Google Scholar
[34]
H. Liu, S. Wang, H. Gao, H. Yang, F. Wang, X. Chen, et al. A simple polyacrylamide gel route for the synthesis of MgAl2O4 nanoparticles with different metal sources as an efficient adsorbent: Neural network algorithm simulation, equilibrium, kinetics and thermodynamic studies, Sep. Purif. Technol. 281 (2022) 119855.
DOI: 10.1016/j.seppur.2021.119855
Google Scholar
[35]
S. Wang, H. Liu, Y. Zhang, X. Yu, Y. Han, H. Gao, et al. Construction of g-C3N4/Au/MgAl2O4 photocatalysts with different coupling methods to improve the photodegradation behavior and performance prediction, J. Environ. Chem. Eng. 11(6) (2023) 111453.
DOI: 10.1016/j.jece.2023.111453
Google Scholar
[36]
Y.Z. Halefoglu, G. Souadi, M. Ayvacikli, K. Bulcar, M. U. S. T. A. F. A. Topaksu, A. Canimoglu, et al. Tb-doped MgAl2O4 phosphors: A study of structural and luminescence characteristics, Appl. Radiat. Isotopes 203 (2024) 111101.
DOI: 10.1016/j.apradiso.2023.111101
Google Scholar
[37]
S. Wang, M. Li, H. Gao, Z. Yin, C. Chen, H. Yang, et al. Construction of CeO2/YMnO3 and CeO2/MgAl2O4/YMnO3 photocatalysts and adsorption of dyes and photocatalytic oxidation of antibiotics: Performance prediction, degradation pathway and mechanism insight, Appl. Surf. Sci. 608 (2023) 154977.
DOI: 10.1016/j.apsusc.2022.154977
Google Scholar
[38]
K.S. Paliwal, D. Patra, A. Roy, A. Mitra, A., B.J. Hazarika, V. Mahalingam, Light-driven CO2 fixation into epoxides using an Al2O3/CoAl2O4 composite photocatalyst, Inorg. Chem. 64(4) (2025) 1808–1820.
DOI: 10.1021/acs.inorgchem.4c04375
Google Scholar
[39]
E.A. Chavarriaga, T.B. Wermuth, S. Arcaro, C. García, M.A. Ramirez, A. Gómez, et al. One-step synthesis of CoAl2O4 inorganic pigment by solution combustion: The impact of fuel and ammonium nitrate, Ceram. Int. 50(1) (2024) 45-54.
DOI: 10.1016/j.ceramint.2023.09.205
Google Scholar
[40]
J. Yuan, Y. Liu, C. Yan, C. Hu, J. Xu, Construction of soil moisture three-band indices with Vis-NIR spectroscopy based on the Kubelka-Munk and Hapke model, Measurement 249 (2025) 116979.
DOI: 10.1016/j.measurement.2025.116979
Google Scholar
[41]
M.Y. Nassar, I.S. Ahmed, I. Samir, A novel synthetic route for magnesium aluminate (MgAl2O4) nanoparticles using sol–gel auto combustion method and their photocatalytic properties, Spectrochim. Acta A 131 (2014) 329-334.
DOI: 10.1016/j.saa.2014.04.040
Google Scholar
[42]
E.M. Ewais, A.A. El-Amir, D.H. Besisa, M. Esmat, B.E. El-Anadouli, Synthesis of nanocrystalline MgO/MgAl2O4 spinel powders from industrial wastes, J. Alloy. Compd. 691 (2017) 822-833.
DOI: 10.1016/j.jallcom.2016.08.279
Google Scholar
[43]
S. Wang, H. Gao, Y. Wei, Y. Li, X. Yang, L. Fang, L. Lei, Insight into the optical, color, photoluminescence properties, and photocatalytic activity of the N–O and C–O functional groups decorating spinel type magnesium aluminate, CrystEngComm 21(2) (2019) 263-277.
DOI: 10.1039/c8ce01474d
Google Scholar
[44]
M. Jafari, S.A. Hassanzadeh-Tabrizi, Preparation of CoAl2O4 nanoblue pigment via polyacrylamide gel method, Powder Technol. 266 (2014) 236-239.
DOI: 10.1016/j.powtec.2014.06.018
Google Scholar
[45]
I.S. Ahmed, H.A. Dessouki, A.A. Ali, Synthesis and characterization of new nano-particles as blue ceramic pigment, Spectrochim. Acta A 71(2) (2008) 616-620.
DOI: 10.1016/j.saa.2007.12.050
Google Scholar
[46]
L. K. De Souza, J. R. Zamian, G. N. da Rocha Filho, L. E. Soledade, I. M. dos Santos, A. G. Souza, T. Scheller, R. S. Angélica, C. E. da Costa, Blue pigments based on CoxZn1-xAl2O4 spinels synthesized by the polymeric precursor method, Dyes Pigments 81(3) (2009) 187-192.
DOI: 10.1016/j.dyepig.2008.09.017
Google Scholar
[47]
K. Agilandeswari, A. Ruban Kumar, Synthesis, characterisation, optical and luminescence properties of CoAl2O4, AIP Conf. Proc. 1665 (2015) 120022.
DOI: 10.1063/1.4918129
Google Scholar
[48]
H. Gao, H. Yang, S. Wang, D. Li, F. Wang, L. Fang, L. Lei, Y. Xiao, G. Yang, A new route for the preparation of CoAl2O4 nanoblue pigments with high uniformity and its optical properties, J. Sol-Gel Sci. Technol. 86 (2018) 206-216.
DOI: 10.1007/s10971-018-4609-y
Google Scholar
[49]
Y. Tang, M. Zhang, Z. Wu, Z. Chen, C. Liu, Y. Lin, F. Chen, Synthesis and photocatalytic activity of p–n junction CeO2/Co3O4 photocatalyst for the removal of various dyes from wastewater, Mater. Res. Expr. 5(4) (2018) 045045.
DOI: 10.1088/2053-1591/aabdd8
Google Scholar
[50]
T. Gholami, M. Salavati-Niasari, S. Varshoy, Investigation of the electrochemical hydrogen storage and photocatalytic properties of CoAl2O4 pigment: Green synthesis and characterization, Int. J. Hydrog. Energy 41(22) (2016) 9418-9426.
DOI: 10.1016/j.ijhydene.2016.03.144
Google Scholar
[51]
F.F. Hong, J.L. Yong, G.Z. Li, Studies on the synergetic effects of mineral and steam on the composition changes of heavy oil, Energy Fuels 15(6) (2001) 1475-1479.
DOI: 10.1021/ef0100911
Google Scholar
[52]
K. Zhao, X. Wang, H. Pan, Q. Li, J. Yang, X. Li, Z. Zhang, Preparation of molybdenum-doped akaganeite nano-rods and their catalytic effect on the viscosity reduction of extra heavy crude oil, Appl. Surf. Sci. 427 (2018) 1080-1089.
DOI: 10.1016/j.apsusc.2017.09.097
Google Scholar
[53]
X. Zhong, J. Chen, R. An, K. Li, M. Chen, A state-of-the-art review of nanoparticle applications with a focus on heavy oil viscosity reduction, J. Mol. Liq. 344 (2021) 117845.
DOI: 10.1016/j.molliq.2021.117845
Google Scholar
[54]
F. Zhao, Y. Liu, N. Lu, T. Xu, G. Zhu, K. Wang, A review on upgrading and viscosity reduction of heavy oil and bitumen by underground catalytic cracking, Energy Rep. 7 (2021) 4249-4272.
DOI: 10.1016/j.egyr.2021.06.094
Google Scholar
[55]
I. Khan, K. Saeed, I. Zekker, B. Zhang, A.H. Hendi, A. Ahmad, et al. Review on methylene blue: its properties, uses, toxicity and photodegradation, Water 14(2) (2022) 242.
DOI: 10.3390/w14020242
Google Scholar
[56]
M. Sharma, S. Sharma, M.S. Akhtar, R. Kumar, A. Umar, A.A.M. Alkhanjaf, S. Baskoutas, Microorganisms-assisted degradation of Acid Orange 7 dye: a review, Int. J. Environ. Sci. Technol. 21(7) (2024) 6133-6166.
DOI: 10.1007/s13762-023-05438-y
Google Scholar
[57]
A.A.M. Farag, I.S. Yahia, Structural, absorption and optical dispersion characteristics of rhodamine B thin films prepared by drop casting technique, Opt. Commun. 283(21) (2010) 4310-4317.
DOI: 10.1016/j.optcom.2010.06.081
Google Scholar
[58]
Z.H. Zhu, Y. Liu, C. Song, Y. Hu, G. Feng, B.Z. Tang, Porphyrin-based two-dimensional layered metal–organic framework with sono-/photocatalytic activity for water decontamination, ACS Nano 16(1) (2021) 1346-1357.
DOI: 10.1021/acsnano.1c09301
Google Scholar
[59]
A. Basaleh, M. H. H. Mahmoud, CoAl2O4–g-C3N4 nanocomposite photocatalysts for powerful visible-light-driven hydrogen production, ACS Omega 6(15) (2021) 10428-10436.
DOI: 10.1021/acsomega.1c00872
Google Scholar
[60]
Z. Li, R. Zhang, M. Xu, J. He, Y. Liu, D. Chen, D. Li, Modification of bismuth-rich to synthesize floral spherical Z-type heterojunction CoAl2O4/Bi4O5Br2 photocatalysts for photocatalytic degradation of tetracycline: DFT calculations, toxicity assessment, J. Alloy. Compd. 1010 (2025) 177864.
DOI: 10.1016/j.jallcom.2024.177864
Google Scholar
[61]
P. Sundararajaperumal, P. Velusamy, M. Mahendran, P. Sivaprakash, Influence of Nd3+ ions modified CoAl2O4 nanomaterials for high efficiency dye degradation application, Ceram. Int. 50(18) (2024) 34173-34183.
DOI: 10.1016/j.ceramint.2024.06.236
Google Scholar
[62]
S.S. Raj, S.K. Gupta, V. Grover, K.P. Muthe, V. Natarajan, A.K. Tyagi, MgAl2O4 spinel: Synthesis, carbon incorporation and defect-induced luminescence, J. Mol. Struct. 1089 (2015) 81-85.
DOI: 10.1016/j.molstruc.2015.02.002
Google Scholar
[63]
X.X. Wang, Y. Li, M.C. Liu, L.B. Kong, Fabrication and electrochemical investigation of MWO4 (M = Co, Ni) nanoparticles as high-performance anode materials for lithium-ion batteries, Ionics 24 (2018) 363-372.
DOI: 10.1007/s11581-017-2200-0
Google Scholar
[64]
X. Zhao, H. Yang, Z. Cui, R. Li, W. Feng, Enhanced photocatalytic performance of Ag–Bi4Ti3O12 nanocomposites prepared by a photocatalytic reduction method, Mater. Technol. 32 (2017) 870-880.
DOI: 10.1080/10667857.2017.1371914
Google Scholar
[65]
K. Vinodgopal, D.E. Wynkoop, P.V. Kamat, Environmental photochemistry on semiconductor surfaces: Photosensitized degradation of a textile azo dye, acid orange 7, on TiO2 particles using visible light, Environ. Sci. Technol. 30 (1996) 1660-1666.
DOI: 10.1021/es950655d
Google Scholar
[66]
X. Yan, T. Ohno, K. Nishijima, R. Abe, B. Ohtani, Is methylene blue an appropriate substrate for a photocatalytic activity test? A study with visible-light responsive titania, Chem. Phys. Lett. 429 (2006) 606-610.
DOI: 10.1016/j.cplett.2006.08.081
Google Scholar