Mg1-xCoxAl2O4 Nano-Catalysts Synthesis and their Potential Applications to Reduce Viscosity with Heavy Oil and Dye Degradation

Article Preview

Abstract:

A novel Mg1-xCoxAl2O4 (x=0, 0.25, 0.50, 0.75 and 1) nano-catalyst with high viscosity reduction rate of heavy oil and photocatalytic activity for the degradation methylene blue was synthesized by a tartaric acid complexation method. The crystallite size, cell parameter, cell volume and particle size of Mg1-xCoxAl2O4 catalyst are proportional to the x value, while the specific surface area is inversely proportional to the x value. The effects of different catalyst, catalyst content and water content on viscosity reduction rate of Dongying heavy oil were investigated. When the catalyst content of Mg0.5Co0.5Al2O4 is 15 wt%, the viscosity reduction rate of heavy oil reaches 89.53%, while water decreases the viscosity reduction rate. The degradation percentage of the Mg1-xCoxAl2O4 (x=0.5) catalyst for the degradation of methylene blue reached 95.34% when the catalyst dose was 1 g/L, the dye concentration was 15 mg/L and pH was 7. The dye sensitization greatly improved the photocatalytic activity of the MgAl2O4 under the combined action of Mg and Co ions. This new experimental phenomenon will help to expand the application range of spinel aluminate in catalysis fields including reduce viscosity with heavy oil and dye removal.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

101-122

Citation:

Online since:

December 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Q. Shi, J. Wu, Review on sulfur compounds in petroleum and its products: state-of-the-art and perspectives, Energy Fuels 35(18) (2021) 14445-14461.

DOI: 10.1021/acs.energyfuels.1c02229

Google Scholar

[2] M. Zarei, M. Eskandarzade, A. Babapoor, A. Seyfaee, A review of recent advances and applications of inorganic coating for oil and gas pipe systems, Surf. Coat. Technol. 494 (2024) 131339.

DOI: 10.1016/j.surfcoat.2024.131339

Google Scholar

[3] L. Wang, J. Guo, C. Li, R. Xiong, X. Chen, X. Zhang, Advancements and future prospects in in-situ catalytic technology for heavy oil reservoirs in China, A review. Fuel 374 (2024) 132376.

DOI: 10.1016/j.fuel.2024.132376

Google Scholar

[4] G.Z. Deng, X.D. Tang, X.J. Ma, S.H. Ling, F.R. Fei, Q.B. Mao, J.J. Li, Effects of different catalytic liquefaction of bio-oil on hydrothermal upgrading of heavy oil: A comprehensive analysis of composition, desulfurization and hydrogenation, J. Analyt. Appl. Pyroly. 179 (2024) 106455.

DOI: 10.1016/j.jaap.2024.106455

Google Scholar

[5] X. Zhang, J. Guo, D. Fei, L. Wang, Z. Peng, J. Li, J. Dong, Polymer surfactants as viscosity reducers for ultra-heavy oil: Synthesis and viscosity reduction mechanism, Fuel 357 (2024) 129871.

DOI: 10.1016/j.fuel.2023.129871

Google Scholar

[6] Y. Liu, J. Bai, P. Guo, W. Zhang, L. Zhong, C. Lyu, et al. Experimental study on water-in-heavy-oil droplets stability and viscosity variations in the dilution process of water-in-heavy-oil emulsions by light crude oil, Energies 17(2) (2024) 332.

DOI: 10.3390/en17020332

Google Scholar

[7] B. Wang, Y. Chang, R. Ma, Q. Zhang, W. Wang, Study on optimized culture of microbial strains and their ability in wax removal and viscosity reduction of paraffin-based crude oil, Fuel 369 (2024) 131697.

DOI: 10.1016/j.fuel.2024.131697

Google Scholar

[8] X. He, H. Liu, X. Liu, W. Jiang, W. Zheng, H. Zhang, et al. Experimental study and numerical simulation of heavy oil viscosity reduction device based on jet cavitation, Petroleum Sci. Technol. 42(25) (2024) 4745-4767.

DOI: 10.1080/10916466.2023.2233558

Google Scholar

[9] Y. Wang, L. Zhang, R. Lin, X. Han, K. Xie, C. Huang, et al. Experimental and mechanistic study on the effect of active components and calcination temperatures on biochar-based catalysts for catalyzing heavy oil viscosity reduction, Geoenergy Sci. Eng. 240 (2024) 213078.

DOI: 10.1016/j.geoen.2024.213078

Google Scholar

[10] Z. Shen, X. Fang, W. He, L. Zhang, Y. Li, G. Qi, et al. Enhanced aquathermolysis of water–heavy oil–ethanol catalyzed by B@Zn(II)L at low temperature, Molecules 29(9) (2024) 2057.

DOI: 10.3390/molecules29092057

Google Scholar

[11] E.S. Al-Farraj, E.A. Abdelrahman, Efficient photocatalytic degradation of congo red dye using facilely synthesized and characterized MgAl2O4 nanoparticles, ACS Omega 9(4) (2024) 4870-4880.

DOI: 10.1021/acsomega.3c08485

Google Scholar

[12] V.P. Chitra, P. Vasantharani, G. Sivakumar, M. Santhamoorthy, L. Guganathan, S. Devanesan, et al. Preparation and characterization of MgAl2O4 nanoparticles by hydrothermal method and their photocatalytic and antibacterial activity applications, Ceram. Int. 50(18) (2024) 32737-32747.

DOI: 10.1016/j.ceramint.2024.06.083

Google Scholar

[13] X. Li, Photocatalytic activity of magnesium aluminate for degradation of petroleum waste on water surface driven by sunlight, Russ. J. Phys. Chem. A 97(14) (2023) 415-3425.

DOI: 10.1134/s0036024424010278

Google Scholar

[14] R. Ianoş, R. Lazău, P. Barvinschi, Synthesis of Mg1-xCoxAl2O4 blue pigments via combustion route, Adv. Powder Technol. 22(3) (2011) 396-400.

DOI: 10.1016/j.apt.2010.06.006

Google Scholar

[15] W. Saengsui, T. Tangkittimasak, M. Suwan, N. Sangwong, C. Tangon, N. Chanlek, P. Rakkwamsuk, S. Supothina, W. Meevasana, Electronic and phononic absorption contributions to near-infrared reflectance of Mg1-xCoxAl2O4, Zn1-xCoxFe2O4 and CrxSbxTi1-2xO2 pigments, J. Alloy. Compd. 939 (2023) 168695.

DOI: 10.1016/j.jallcom.2022.168695

Google Scholar

[16] E.A. Asl, M. Haghighi, A. Talati, A. Enhanced simulated sunlight-driven magnetic MgAl2O4-AC nanophotocatalyst for efficient degradation of organic dyes, Sep. Purif. Technol. 251 (2020) 117003.

DOI: 10.1016/j.seppur.2020.117003

Google Scholar

[17] T.V. Nitha, S. Britto, MgAl2O4 nanospinel: Green synthesis, characterization and effective heterogeneous catalyst for the photocatalytic degradation of carbol fuchsin dye and synthesis of 2-aryl substituted benzoxazole derivatives, Inorg. Chem. Commun. 159 (2024) 111776.

DOI: 10.1016/j.inoche.2023.111776

Google Scholar

[18] W.B. Ameur, B. Chouchene, R. Schneider, A. Hajjaji, M. Zouaoui, Biosynthesis of MgAl2O4 nanoparticles and their use as photocatalyst for sunlight-driven degradation of amido-black, Solid State Commun. 404 (2025) 116044.

DOI: 10.1016/j.ssc.2025.116044

Google Scholar

[19] S. Sanjabi, A. Salehirad, MgAl2O4/CoFe2O4/Zeolite A magnetic ceramic nanocomposite for efficacious elimination of Methylene blue from aqueous solutions: composition influence, Res. Chem. Intermed. (2025) 1-29

DOI: 10.1007/s11164-025-05679-1

Google Scholar

[20] M. Taneja, J. Kumar, Characterization of natural and synthetic colorants in food industries: Benefits, impact, and applications, AIP Conf. Proc. 2807 (2025) 060008.

DOI: 10.1063/5.0273029

Google Scholar

[21] S. Tyagi, R.T. Kapoor, R. Singh, M.P. Shah, Insights on microbial enzymes mediated biodegradation of Azo dyes: a sustainable strategy for environment clean up, Bioremediat. J. (2025) 1-43

DOI: 10.1080/10889868.2025.2498695

Google Scholar

[22] R.A. Kristanti, W.J. Ngu, A. Yuniarto, T. Hadibarata, Rhizofiltration for removal of inorganic and organic pollutants in groundwater: a review, Biointerface Res. Appl. Chem. 11 (2021) 12326-12347.

DOI: 10.33263/briac114.1232612347

Google Scholar

[23] Q. Zhu, J. Song, Z. Liu, K. Wu, X. Li, Z. Chen, H. Pang, Photothermal catalytic degradation of textile dyes by laccase immobilized on Fe3O4@SiO2 nanoparticles, J. Colloid Interf. Sci. 623 (2022) 992-1001.

DOI: 10.1016/j.jcis.2022.05.083

Google Scholar

[24] C. Zhang, H. Li, X. Yang, X. Tan, C. Wan, X. Liu, Characterization of electrodes modified with sludge-derived biochar and its performance of electrocatalytic oxidation of azo dyes, J. Environ. Manag. 324 (2022) 116445.

DOI: 10.1016/j.jenvman.2022.116445

Google Scholar

[25] Z. Wu, B. Fan, L. Zhang, Y. Yao, S. Hong, H. Yu, Y. Jia, Strongly enhanced piezoelectric-catalysis of ZnSnO3/graphite hybrid materials for dye wastewater decomposition, Ceram. Int. 49(18) (2023) 29614-29621.

DOI: 10.1016/j.ceramint.2023.06.180

Google Scholar

[26] Q. Wu, G. Feng, F. Jiang, X. Zhang, Y. Xu, J. Liu, et al. Insight into enhanced adsorption of Congo red by petal-like MgAl2O4: Effect of dehydroxylation, J. Phys. Chem. Solids 197 (2025) 112398.

DOI: 10.1016/j.jpcs.2024.112398

Google Scholar

[27] E.A. Asl, M. Haghighi, A. Talati, Enhanced solar-driven photocatalytic degradation of organic dyes using sono-dispersed mesoporous MgAl2O4 over carbon based materials, J. Taiwan Inst. Chem. Eng. 162 (2024) 105627.

DOI: 10.1016/j.jtice.2024.105627

Google Scholar

[28] S. Ahmad, T. Hussain, U. Shuaib, F.E. Mubarik, A. Yasin, I. Shakir, Facile fabrication of MgAl2O4/MWCNT nanocomposite for efficient and stable solar-driven degradation of organic dye, Phys. Scripta 99(6) (2024) 0659a1.

DOI: 10.1088/1402-4896/ad4b6e

Google Scholar

[29] C. Chen, Q. Li, Q. Zhang, Y. Li, Y. Wei, S. Wang, Artificial neural network algorithm for predict the photocatalytic activity of the Mn co-doped MgAl2O4: Ce composite photocatalyst. In 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP) (pp.1-5). IEEE.

DOI: 10.1109/ICSIDP47821.2019.9173359

Google Scholar

[30] S. Wang, H. Gao, C. Chen, Y. Wei, X. Zhao, Irradiation assisted polyacrylamide gel route for the synthesize of the Mg1-xCoxAl2O4 nano-photocatalysts and its optical and photocatalytic performances, J. Sol-Gel Sci. Technol. 92 (2019) 186-199.

DOI: 10.1007/s10971-019-05062-8

Google Scholar

[31] S. Parida, B.B. Palei, P. K. Srivastava, Synthesis of rGO-reinforced MgAl2O4 spinel composites by solid-state powder route mechanism: A comparative analysis between non-reinforced and rGO-reinforced spinel composites, Ceram. Int. 50(12) (2024) 21583-21600.

DOI: 10.1016/j.ceramint.2024.03.271

Google Scholar

[32] X. Yu, S. Wang, Y. Zhang, X. Yu, H. Gao, H. Yang, et al. Utilization of stable and efficient high‐entropy (Ni0.2Zn0.2Mg0.2Cu0.2Co0.2)Al2O4 catalyst with polyvalent transition metals to boost peroxymonosulfate activation toward pollutant degradation, Small 21 (2025) 2410819.

DOI: 10.1002/smll.202410819

Google Scholar

[33] J. Li, S. Wang, G. Sun, H. Gao, X. Yu, S. Tang, et al. Facile preparation of MgAl2O4/CeO2/Mn3O4 heterojunction photocatalyst and enhanced photocatalytic activity, Mater. Today Chem. 19 (2021) 100390.

DOI: 10.1016/j.mtchem.2020.100390

Google Scholar

[34] H. Liu, S. Wang, H. Gao, H. Yang, F. Wang, X. Chen, et al. A simple polyacrylamide gel route for the synthesis of MgAl2O4 nanoparticles with different metal sources as an efficient adsorbent: Neural network algorithm simulation, equilibrium, kinetics and thermodynamic studies, Sep. Purif. Technol. 281 (2022) 119855.

DOI: 10.1016/j.seppur.2021.119855

Google Scholar

[35] S. Wang, H. Liu, Y. Zhang, X. Yu, Y. Han, H. Gao, et al. Construction of g-C3N4/Au/MgAl2O4 photocatalysts with different coupling methods to improve the photodegradation behavior and performance prediction, J. Environ. Chem. Eng. 11(6) (2023) 111453.

DOI: 10.1016/j.jece.2023.111453

Google Scholar

[36] Y.Z. Halefoglu, G. Souadi, M. Ayvacikli, K. Bulcar, M. U. S. T. A. F. A. Topaksu, A. Canimoglu, et al. Tb-doped MgAl2O4 phosphors: A study of structural and luminescence characteristics, Appl. Radiat. Isotopes 203 (2024) 111101.

DOI: 10.1016/j.apradiso.2023.111101

Google Scholar

[37] S. Wang, M. Li, H. Gao, Z. Yin, C. Chen, H. Yang, et al. Construction of CeO2/YMnO3 and CeO2/MgAl2O4/YMnO3 photocatalysts and adsorption of dyes and photocatalytic oxidation of antibiotics: Performance prediction, degradation pathway and mechanism insight, Appl. Surf. Sci. 608 (2023) 154977.

DOI: 10.1016/j.apsusc.2022.154977

Google Scholar

[38] K.S. Paliwal, D. Patra, A. Roy, A. Mitra, A., B.J. Hazarika, V. Mahalingam, Light-driven CO2 fixation into epoxides using an Al2O3/CoAl2O4 composite photocatalyst, Inorg. Chem. 64(4) (2025) 1808–1820.

DOI: 10.1021/acs.inorgchem.4c04375

Google Scholar

[39] E.A. Chavarriaga, T.B. Wermuth, S. Arcaro, C. García, M.A. Ramirez, A. Gómez, et al. One-step synthesis of CoAl2O4 inorganic pigment by solution combustion: The impact of fuel and ammonium nitrate, Ceram. Int. 50(1) (2024) 45-54.

DOI: 10.1016/j.ceramint.2023.09.205

Google Scholar

[40] J. Yuan, Y. Liu, C. Yan, C. Hu, J. Xu, Construction of soil moisture three-band indices with Vis-NIR spectroscopy based on the Kubelka-Munk and Hapke model, Measurement 249 (2025) 116979.

DOI: 10.1016/j.measurement.2025.116979

Google Scholar

[41] M.Y. Nassar, I.S. Ahmed, I. Samir, A novel synthetic route for magnesium aluminate (MgAl2O4) nanoparticles using sol–gel auto combustion method and their photocatalytic properties, Spectrochim. Acta A 131 (2014) 329-334.

DOI: 10.1016/j.saa.2014.04.040

Google Scholar

[42] E.M. Ewais, A.A. El-Amir, D.H. Besisa, M. Esmat, B.E. El-Anadouli, Synthesis of nanocrystalline MgO/MgAl2O4 spinel powders from industrial wastes, J. Alloy. Compd. 691 (2017) 822-833.

DOI: 10.1016/j.jallcom.2016.08.279

Google Scholar

[43] S. Wang, H. Gao, Y. Wei, Y. Li, X. Yang, L. Fang, L. Lei, Insight into the optical, color, photoluminescence properties, and photocatalytic activity of the N–O and C–O functional groups decorating spinel type magnesium aluminate, CrystEngComm 21(2) (2019) 263-277.

DOI: 10.1039/c8ce01474d

Google Scholar

[44] M. Jafari, S.A. Hassanzadeh-Tabrizi, Preparation of CoAl2O4 nanoblue pigment via polyacrylamide gel method, Powder Technol. 266 (2014) 236-239.

DOI: 10.1016/j.powtec.2014.06.018

Google Scholar

[45] I.S. Ahmed, H.A. Dessouki, A.A. Ali, Synthesis and characterization of new nano-particles as blue ceramic pigment, Spectrochim. Acta A 71(2) (2008) 616-620.

DOI: 10.1016/j.saa.2007.12.050

Google Scholar

[46] L. K. De Souza, J. R. Zamian, G. N. da Rocha Filho, L. E. Soledade, I. M. dos Santos, A. G. Souza, T. Scheller, R. S. Angélica, C. E. da Costa, Blue pigments based on CoxZn1-xAl2O4 spinels synthesized by the polymeric precursor method, Dyes Pigments 81(3) (2009) 187-192.

DOI: 10.1016/j.dyepig.2008.09.017

Google Scholar

[47] K. Agilandeswari, A. Ruban Kumar, Synthesis, characterisation, optical and luminescence properties of CoAl2O4, AIP Conf. Proc. 1665 (2015) 120022.

DOI: 10.1063/1.4918129

Google Scholar

[48] H. Gao, H. Yang, S. Wang, D. Li, F. Wang, L. Fang, L. Lei, Y. Xiao, G. Yang, A new route for the preparation of CoAl2O4 nanoblue pigments with high uniformity and its optical properties, J. Sol-Gel Sci. Technol. 86 (2018) 206-216.

DOI: 10.1007/s10971-018-4609-y

Google Scholar

[49] Y. Tang, M. Zhang, Z. Wu, Z. Chen, C. Liu, Y. Lin, F. Chen, Synthesis and photocatalytic activity of p–n junction CeO2/Co3O4 photocatalyst for the removal of various dyes from wastewater, Mater. Res. Expr. 5(4) (2018) 045045.

DOI: 10.1088/2053-1591/aabdd8

Google Scholar

[50] T. Gholami, M. Salavati-Niasari, S. Varshoy, Investigation of the electrochemical hydrogen storage and photocatalytic properties of CoAl2O4 pigment: Green synthesis and characterization, Int. J. Hydrog. Energy 41(22) (2016) 9418-9426.

DOI: 10.1016/j.ijhydene.2016.03.144

Google Scholar

[51] F.F. Hong, J.L. Yong, G.Z. Li, Studies on the synergetic effects of mineral and steam on the composition changes of heavy oil, Energy Fuels 15(6) (2001) 1475-1479.

DOI: 10.1021/ef0100911

Google Scholar

[52] K. Zhao, X. Wang, H. Pan, Q. Li, J. Yang, X. Li, Z. Zhang, Preparation of molybdenum-doped akaganeite nano-rods and their catalytic effect on the viscosity reduction of extra heavy crude oil, Appl. Surf. Sci. 427 (2018) 1080-1089.

DOI: 10.1016/j.apsusc.2017.09.097

Google Scholar

[53] X. Zhong, J. Chen, R. An, K. Li, M. Chen, A state-of-the-art review of nanoparticle applications with a focus on heavy oil viscosity reduction, J. Mol. Liq. 344 (2021) 117845.

DOI: 10.1016/j.molliq.2021.117845

Google Scholar

[54] F. Zhao, Y. Liu, N. Lu, T. Xu, G. Zhu, K. Wang, A review on upgrading and viscosity reduction of heavy oil and bitumen by underground catalytic cracking, Energy Rep. 7 (2021) 4249-4272.

DOI: 10.1016/j.egyr.2021.06.094

Google Scholar

[55] I. Khan, K. Saeed, I. Zekker, B. Zhang, A.H. Hendi, A. Ahmad, et al. Review on methylene blue: its properties, uses, toxicity and photodegradation, Water 14(2) (2022) 242.

DOI: 10.3390/w14020242

Google Scholar

[56] M. Sharma, S. Sharma, M.S. Akhtar, R. Kumar, A. Umar, A.A.M. Alkhanjaf, S. Baskoutas, Microorganisms-assisted degradation of Acid Orange 7 dye: a review, Int. J. Environ. Sci. Technol. 21(7) (2024) 6133-6166.

DOI: 10.1007/s13762-023-05438-y

Google Scholar

[57] A.A.M. Farag, I.S. Yahia, Structural, absorption and optical dispersion characteristics of rhodamine B thin films prepared by drop casting technique, Opt. Commun. 283(21) (2010) 4310-4317.

DOI: 10.1016/j.optcom.2010.06.081

Google Scholar

[58] Z.H. Zhu, Y. Liu, C. Song, Y. Hu, G. Feng, B.Z. Tang, Porphyrin-based two-dimensional layered metal–organic framework with sono-/photocatalytic activity for water decontamination, ACS Nano 16(1) (2021) 1346-1357.

DOI: 10.1021/acsnano.1c09301

Google Scholar

[59] A. Basaleh, M. H. H. Mahmoud, CoAl2O4–g-C3N4 nanocomposite photocatalysts for powerful visible-light-driven hydrogen production, ACS Omega 6(15) (2021) 10428-10436.

DOI: 10.1021/acsomega.1c00872

Google Scholar

[60] Z. Li, R. Zhang, M. Xu, J. He, Y. Liu, D. Chen, D. Li, Modification of bismuth-rich to synthesize floral spherical Z-type heterojunction CoAl2O4/Bi4O5Br2 photocatalysts for photocatalytic degradation of tetracycline: DFT calculations, toxicity assessment, J. Alloy. Compd. 1010 (2025) 177864.

DOI: 10.1016/j.jallcom.2024.177864

Google Scholar

[61] P. Sundararajaperumal, P. Velusamy, M. Mahendran, P. Sivaprakash, Influence of Nd3+ ions modified CoAl2O4 nanomaterials for high efficiency dye degradation application, Ceram. Int. 50(18) (2024) 34173-34183.

DOI: 10.1016/j.ceramint.2024.06.236

Google Scholar

[62] S.S. Raj, S.K. Gupta, V. Grover, K.P. Muthe, V. Natarajan, A.K. Tyagi, MgAl2O4 spinel: Synthesis, carbon incorporation and defect-induced luminescence, J. Mol. Struct. 1089 (2015) 81-85.

DOI: 10.1016/j.molstruc.2015.02.002

Google Scholar

[63] X.X. Wang, Y. Li, M.C. Liu, L.B. Kong, Fabrication and electrochemical investigation of MWO4 (M = Co, Ni) nanoparticles as high-performance anode materials for lithium-ion batteries, Ionics 24 (2018) 363-372.

DOI: 10.1007/s11581-017-2200-0

Google Scholar

[64] X. Zhao, H. Yang, Z. Cui, R. Li, W. Feng, Enhanced photocatalytic performance of Ag–Bi4Ti3O12 nanocomposites prepared by a photocatalytic reduction method, Mater. Technol. 32 (2017) 870-880.

DOI: 10.1080/10667857.2017.1371914

Google Scholar

[65] K. Vinodgopal, D.E. Wynkoop, P.V. Kamat, Environmental photochemistry on semiconductor surfaces:  Photosensitized degradation of a textile azo dye, acid orange 7, on TiO2 particles using visible light, Environ. Sci. Technol. 30 (1996) 1660-1666.

DOI: 10.1021/es950655d

Google Scholar

[66] X. Yan, T. Ohno, K. Nishijima, R. Abe, B. Ohtani, Is methylene blue an appropriate substrate for a photocatalytic activity test? A study with visible-light responsive titania, Chem. Phys. Lett. 429 (2006) 606-610.

DOI: 10.1016/j.cplett.2006.08.081

Google Scholar