Mechanical and Tribological Properties of AlTiN, CrN/AlTiN and CrAlTiN Coatings Deposited by Cathodic Arc PVD

Article Preview

Abstract:

This material presents the research of AlTiN coating properties, deposited at low temperature by cathodic arc physical vapor deposition technology. As well as evolutionary development of coating when is added Cr element to it, or creating multilayer structure adding a CrN as internal layer on it. Each of these steps results in increasing with almost 80% of coating resistance to plastic deformation and a huge reduction in the wear rate of the resulting coating.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

135-144

Citation:

Online since:

December 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Lugscheider, O. Knotek, C. Barimani, S. Guerreiro, H.K. Zimmermann, "Cr-C-N coatings deposited with different reactive carbon carrier gases in the arc PVD process", Surf. Coat. Technol. 94-95 (1997) 416–421

DOI: 10.1016/S0257-8972(97)00448-9

Google Scholar

[2] N. Petkov, T. Bakalova, Hr. Bahchedzhiev, P. Louda, P. Kejzlar, P. Capkova, M. Kormunda, P. Rysanek, "Cathodic arc deposition of TiCN coatings - influence of the C2H2/N2 ratio on the structure and coating properties", J. Nano Res. 51 (2018) 78–91, https://doi.org/10.4028/www.scientific.net/JNanoR.51.78. ISSN: 1661-9897

DOI: 10.4028/www.scientific.net/jnanor.51.78

Google Scholar

[3] P.-L. Sun, Ch.-Y. Su, T.-P. Liou, Ch.-H. Hsu, Ch.-K. Lin, Mechanical behavior of TiN/CrN nano-multilayer thin film deposited by unbalanced magnetron sputter process", Journal of Alloys and Compounds 509 (2011) 3197 – 3201

DOI: 10.1016/j.jallcom.2010.12.057

Google Scholar

[4] Y. X. Xu, L. Chen, B. Yang, Y. B. Peng, Y. Du, J. C. Feng, F. Pei, "Effect of CrN addition on the structure, mechanical and thermal properties of Ti-Al-N coating", Surface and Coatings Technology, Vol. 235, pp.506-512 (2013)

DOI: 10.1016/j.surfcoat.2013.08.010

Google Scholar

[5] M.-H. Tuilier, M.-J. Pac, G. Covarel, C. Rousselot, L. Khouchaf, "Structural investigation of thin films of Ti1−xAlxN ternary nitrides using Ti K-edge X-ray absorption fine structure", Surface and Coatings Technology, Vol. 201, pp.4536-4541 (2007)

DOI: 10.1016/j.surfcoat.2006.09.095

Google Scholar

[6] A. Horling, L. Hultman, "Thermal stability of arc evaporated high aluminum-content Ti1-xAlxN thin films", Journal of Vaccum Science and Technology A, Vol. 20, p.1815 (2002)

DOI: 10.1116/1.1503784

Google Scholar

[7] I. A. Shulepov, E. B. Kashkarov, I. B. Stepanov, M. S. Syrtanov, A. N. Sutygina, I. Shanenkov, A. Obrosov, S. Weiß, "The Formation of Composite Ti-Al-N Coatings Using Filtered Vacuum Arc Deposition with Separate Cathodes", Metals, Vol. 7, art 497 (2017)

DOI: 10.3390/met7110497

Google Scholar

[8] F. Mei, N. Shao, L. Wei, G. Li, "Effect of N2 partial pressure on the microstructure and mechanical properties of reactively sputtered (Ti,Al)N coatings", Materials Letters, Vol. 59, pp.2210-2213 (2005)

DOI: 10.1016/j.matlet.2005.02.068

Google Scholar

[9] K. Singh, P.K. Limaye, N.L. Soni, A.K. Grover, R.G. Agrawal, A.K. Suri, "Wear studies of (Ti–Al)N coatings deposited by reactive magnetron sputtering", Wear, Vol. 258, pp.1813-1824 (2005)

DOI: 10.1016/j.wear.2004.12.023

Google Scholar

[10] J.C. Oliveira, A. Manaia, J.P. Dias, A. Cavaleiro, D. Teer, S. Taylor, "The structure and hardness of magnetron sputtered Ti–Al–N thin films with low N contents (<42 at.%)", Surface and Coatings Technology, Vol. 200, pp.6583-6587 (2006)

DOI: 10.1016/j.surfcoat.2005.11.051

Google Scholar

[11] W. Zhao, F. Mei, Y. Dong, G. Li, "AlxTi1−xN hard coatings synthesized by reactive sputtering using mosaic target", Journal of Materials Processing Technology, Vol. 176, pp.179-182 (2006)

DOI: 10.1016/j.jmatprotec.2006.03.129

Google Scholar

[12] J.C. Oliveira, A. Manaia, A. Cavaleiro, M.T. Vieira, "Structure, hardness and thermal stability of Ti(Al,N) coatings", Surface and Coatings Technology, Vol. 201, pp.4073-4077 (2006)

DOI: 10.1016/j.surfcoat.2006.08.031

Google Scholar

[13] M. Girleanu, M.-J. Pac, P. Louis, O. Ersen, J. Werckmann, C. Rousselot, M.-H. Tuilier, "Characterisation of nano-structured titanium and aluminium nitride coatings by indentation, transmission electron microscopy and electron energy loss spectroscopy", Thin Solid Films, Vol. 519, pp.6190-6195 (2011)

DOI: 10.1016/j.tsf.2011.04.113

Google Scholar

[14] K. Kutschej, P. H. Mayrhofer, M. Kathrein, P. Polcik, R. Tessadri, C. Mitterer, "Structure, mechanical and tribological properties of sputtered Ti1–xAlxN coatings with 0.5≤x≤0.75", Surface and Coatings Technology, Vol. 200, pp.2358-2365 (2005)

DOI: 10.1016/j.surfcoat.2004.12.008

Google Scholar

[15] J.Y. Rauch, C. Rousselot, N. Martin, "Structure and composition of TixAl1-xN thin films sputter deposited using a composite metallic target", Surface and Coatings Technology, Vol. 157, pp.138-143 (2002)

DOI: 10.1016/s0257-8972(02)00146-9

Google Scholar

[16] N. Petkov, T. Bakalova, Hr. Bahchedzhiev, P. Louda, P. Kejzlar, P. Capkova, M. Kormunda, P. Rysanek, "Cathodic Arc Deposition of TiCN coatings - Influence of the C2H2/N2 Ratio on the Structure and Coating Properties", Journal of Nano Research, ISSN: 1661-9897, Vol. 51, p.78 – 91 (2018)

DOI: 10.4028/www.scientific.net/jnanor.51.78

Google Scholar

[17] T. Bakalova, N. Petkov, Hr. Bahchedzhiev, P. Kejzlar, P. Louda, Comparison of Mechanical and Tribologycal Properties of TiCN and CrCN Coatings Deposited by CAD, Manufacturing Technology, Vol. 16, No. 5, pp.854-858 (2016)

DOI: 10.21062/ujep/x.2016/a/1213-2489/mt/16/5/854

Google Scholar

[18] N. Petkov, T. Bakalova, T. Cholakova, Hr. Bahchedzhiev, P. Louda, P. Ryšánek, M. Kormunda, P. Čapková, P. Kejzlar, "Study of Surface Morphology, Structure, Mechanical and Tribological Properties of an AlSiN coating obtained by the Cathodic arc deposition method", Superlattices and Microstructures, Vol. 109, p.402–431 (2017)

DOI: 10.1016/j.spmi.2017.05.022

Google Scholar

[19] N. Petkov, T. Bakalova, A. Obrosov, E. Kashkarov, M. Kormunda, P. Kejzlar, Hr. Bahchedzhiev, K. Dadourek, S. Weiß, "Structural, Mechanical, and Tribological Properties of CrCN coatings obtained by Cathodic Arc Physical Vapour Deposition Technology at different CH4/N2 gas ratio", Thin Solid Films 766 (2023) 139669, https://doi.org/10.1016/ j.tsf.2022.139669

DOI: 10.1016/j.tsf.2022.139669

Google Scholar

[20] T. Bakalova, N. Petkov, T. Cholakova, Fr. Kaván, Hr. Bahchedzhiev, "Mechanical Properties of Titanium-Aluminium base nanomultilayer coatings", Manufacturing Technology, Vol. 16, No. 4, p.657–662 (2016)

DOI: 10.21062/ujep/x.2016/a/1213-2489/mt/16/4/657

Google Scholar

[21] EN1071-3:2005, Advanced Technical Ceramics – Methods of Test for Ceramic Coatings – Part 3: Determination of Adhesion and Other Mechanical Failure Modes by a Scratch Test (2005).

DOI: 10.3403/30078580u

Google Scholar

[22] EN 1071-13:2010, Advanced Technical Ceramics. Methods of Test for Ceramic. Coatings. Determination of Wear Rate by the Pin-on-Disk Method, 2010. https://standards.iteh.ai/catalog/standards/cen/b37c4cf2-7fcf-4c2a-b94d -f8052996ce03/en-1071-13-2010.

DOI: 10.3403/30170505u

Google Scholar

[23] W.Y.H. Liew, J.L.L. Jie, L.Y. Yan, J. Dayou, C.S. Sipaut, M.F.B. Madlan, "Friction and wear behaviour of AlCrN, TiN, TiAlN single-layer coating, and TiAlN/AlCrN, AlN/TiN nano-multilayer coatings in dry sliding", Procedia Engineering, Vol. 68, p.512 – 517 (2013)

DOI: 10.1016/j.proeng.2013.12.214

Google Scholar

[24] N. Petkov, T. Bakalova, Hr. Bahchedzhiev, M. Krafka, L. Lemberk, "Modulation Period Effect on the CrN/TiN Coating Properties", Journal of Nano Research, Vol. 79, p.37 – 48 (2023)

DOI: 10.4028/p-uwlb2x

Google Scholar

[25] EN 1071-13:2010, 2010. Advanced Technical Ceramics. Methods of Test for Ceramic Coatings. Determination of Wear Rate by the Pin-on-Disc Method.

DOI: 10.3403/30170505u

Google Scholar

[26] K. Singh, P. K. Limaye, N. L. Soni, A. K. Grover, R. G. Agrawal, A. K. Suri, Wear studies of (Ti–Al)N coatings deposited by reactive magnetron sputtering, Wear 258 (2005) 1813–1824

DOI: 10.1016/j.wear.2004.12.023

Google Scholar

[27] T. Bakalova, N. Petkov, Hr. Bahchedzhiev, P. Kejzlar, P. Zdobinská, "Tribologycal Properties of TiN/AlTiN and AlTiN/TiN nanomultilayer coatings", Manufacturing Technology, Vol. 16, No. 6, p.1234 – 1240 (2016) ISSN 1213-2489

DOI: 10.21062/ujep/x.2016/a/1213-2489/mt/16/6/1234

Google Scholar