[1]
E. Lugscheider, O. Knotek, C. Barimani, S. Guerreiro, H.K. Zimmermann, "Cr-C-N coatings deposited with different reactive carbon carrier gases in the arc PVD process", Surf. Coat. Technol. 94-95 (1997) 416–421
DOI: 10.1016/S0257-8972(97)00448-9
Google Scholar
[2]
N. Petkov, T. Bakalova, Hr. Bahchedzhiev, P. Louda, P. Kejzlar, P. Capkova, M. Kormunda, P. Rysanek, "Cathodic arc deposition of TiCN coatings - influence of the C2H2/N2 ratio on the structure and coating properties", J. Nano Res. 51 (2018) 78–91, https://doi.org/10.4028/www.scientific.net/JNanoR.51.78. ISSN: 1661-9897
DOI: 10.4028/www.scientific.net/jnanor.51.78
Google Scholar
[3]
P.-L. Sun, Ch.-Y. Su, T.-P. Liou, Ch.-H. Hsu, Ch.-K. Lin, Mechanical behavior of TiN/CrN nano-multilayer thin film deposited by unbalanced magnetron sputter process", Journal of Alloys and Compounds 509 (2011) 3197 – 3201
DOI: 10.1016/j.jallcom.2010.12.057
Google Scholar
[4]
Y. X. Xu, L. Chen, B. Yang, Y. B. Peng, Y. Du, J. C. Feng, F. Pei, "Effect of CrN addition on the structure, mechanical and thermal properties of Ti-Al-N coating", Surface and Coatings Technology, Vol. 235, pp.506-512 (2013)
DOI: 10.1016/j.surfcoat.2013.08.010
Google Scholar
[5]
M.-H. Tuilier, M.-J. Pac, G. Covarel, C. Rousselot, L. Khouchaf, "Structural investigation of thin films of Ti1−xAlxN ternary nitrides using Ti K-edge X-ray absorption fine structure", Surface and Coatings Technology, Vol. 201, pp.4536-4541 (2007)
DOI: 10.1016/j.surfcoat.2006.09.095
Google Scholar
[6]
A. Horling, L. Hultman, "Thermal stability of arc evaporated high aluminum-content Ti1-xAlxN thin films", Journal of Vaccum Science and Technology A, Vol. 20, p.1815 (2002)
DOI: 10.1116/1.1503784
Google Scholar
[7]
I. A. Shulepov, E. B. Kashkarov, I. B. Stepanov, M. S. Syrtanov, A. N. Sutygina, I. Shanenkov, A. Obrosov, S. Weiß, "The Formation of Composite Ti-Al-N Coatings Using Filtered Vacuum Arc Deposition with Separate Cathodes", Metals, Vol. 7, art 497 (2017)
DOI: 10.3390/met7110497
Google Scholar
[8]
F. Mei, N. Shao, L. Wei, G. Li, "Effect of N2 partial pressure on the microstructure and mechanical properties of reactively sputtered (Ti,Al)N coatings", Materials Letters, Vol. 59, pp.2210-2213 (2005)
DOI: 10.1016/j.matlet.2005.02.068
Google Scholar
[9]
K. Singh, P.K. Limaye, N.L. Soni, A.K. Grover, R.G. Agrawal, A.K. Suri, "Wear studies of (Ti–Al)N coatings deposited by reactive magnetron sputtering", Wear, Vol. 258, pp.1813-1824 (2005)
DOI: 10.1016/j.wear.2004.12.023
Google Scholar
[10]
J.C. Oliveira, A. Manaia, J.P. Dias, A. Cavaleiro, D. Teer, S. Taylor, "The structure and hardness of magnetron sputtered Ti–Al–N thin films with low N contents (<42 at.%)", Surface and Coatings Technology, Vol. 200, pp.6583-6587 (2006)
DOI: 10.1016/j.surfcoat.2005.11.051
Google Scholar
[11]
W. Zhao, F. Mei, Y. Dong, G. Li, "AlxTi1−xN hard coatings synthesized by reactive sputtering using mosaic target", Journal of Materials Processing Technology, Vol. 176, pp.179-182 (2006)
DOI: 10.1016/j.jmatprotec.2006.03.129
Google Scholar
[12]
J.C. Oliveira, A. Manaia, A. Cavaleiro, M.T. Vieira, "Structure, hardness and thermal stability of Ti(Al,N) coatings", Surface and Coatings Technology, Vol. 201, pp.4073-4077 (2006)
DOI: 10.1016/j.surfcoat.2006.08.031
Google Scholar
[13]
M. Girleanu, M.-J. Pac, P. Louis, O. Ersen, J. Werckmann, C. Rousselot, M.-H. Tuilier, "Characterisation of nano-structured titanium and aluminium nitride coatings by indentation, transmission electron microscopy and electron energy loss spectroscopy", Thin Solid Films, Vol. 519, pp.6190-6195 (2011)
DOI: 10.1016/j.tsf.2011.04.113
Google Scholar
[14]
K. Kutschej, P. H. Mayrhofer, M. Kathrein, P. Polcik, R. Tessadri, C. Mitterer, "Structure, mechanical and tribological properties of sputtered Ti1–xAlxN coatings with 0.5≤x≤0.75", Surface and Coatings Technology, Vol. 200, pp.2358-2365 (2005)
DOI: 10.1016/j.surfcoat.2004.12.008
Google Scholar
[15]
J.Y. Rauch, C. Rousselot, N. Martin, "Structure and composition of TixAl1-xN thin films sputter deposited using a composite metallic target", Surface and Coatings Technology, Vol. 157, pp.138-143 (2002)
DOI: 10.1016/s0257-8972(02)00146-9
Google Scholar
[16]
N. Petkov, T. Bakalova, Hr. Bahchedzhiev, P. Louda, P. Kejzlar, P. Capkova, M. Kormunda, P. Rysanek, "Cathodic Arc Deposition of TiCN coatings - Influence of the C2H2/N2 Ratio on the Structure and Coating Properties", Journal of Nano Research, ISSN: 1661-9897, Vol. 51, p.78 – 91 (2018)
DOI: 10.4028/www.scientific.net/jnanor.51.78
Google Scholar
[17]
T. Bakalova, N. Petkov, Hr. Bahchedzhiev, P. Kejzlar, P. Louda, Comparison of Mechanical and Tribologycal Properties of TiCN and CrCN Coatings Deposited by CAD, Manufacturing Technology, Vol. 16, No. 5, pp.854-858 (2016)
DOI: 10.21062/ujep/x.2016/a/1213-2489/mt/16/5/854
Google Scholar
[18]
N. Petkov, T. Bakalova, T. Cholakova, Hr. Bahchedzhiev, P. Louda, P. Ryšánek, M. Kormunda, P. Čapková, P. Kejzlar, "Study of Surface Morphology, Structure, Mechanical and Tribological Properties of an AlSiN coating obtained by the Cathodic arc deposition method", Superlattices and Microstructures, Vol. 109, p.402–431 (2017)
DOI: 10.1016/j.spmi.2017.05.022
Google Scholar
[19]
N. Petkov, T. Bakalova, A. Obrosov, E. Kashkarov, M. Kormunda, P. Kejzlar, Hr. Bahchedzhiev, K. Dadourek, S. Weiß, "Structural, Mechanical, and Tribological Properties of CrCN coatings obtained by Cathodic Arc Physical Vapour Deposition Technology at different CH4/N2 gas ratio", Thin Solid Films 766 (2023) 139669, https://doi.org/10.1016/ j.tsf.2022.139669
DOI: 10.1016/j.tsf.2022.139669
Google Scholar
[20]
T. Bakalova, N. Petkov, T. Cholakova, Fr. Kaván, Hr. Bahchedzhiev, "Mechanical Properties of Titanium-Aluminium base nanomultilayer coatings", Manufacturing Technology, Vol. 16, No. 4, p.657–662 (2016)
DOI: 10.21062/ujep/x.2016/a/1213-2489/mt/16/4/657
Google Scholar
[21]
EN1071-3:2005, Advanced Technical Ceramics – Methods of Test for Ceramic Coatings – Part 3: Determination of Adhesion and Other Mechanical Failure Modes by a Scratch Test (2005).
DOI: 10.3403/30078580u
Google Scholar
[22]
EN 1071-13:2010, Advanced Technical Ceramics. Methods of Test for Ceramic. Coatings. Determination of Wear Rate by the Pin-on-Disk Method, 2010. https://standards.iteh.ai/catalog/standards/cen/b37c4cf2-7fcf-4c2a-b94d -f8052996ce03/en-1071-13-2010.
DOI: 10.3403/30170505u
Google Scholar
[23]
W.Y.H. Liew, J.L.L. Jie, L.Y. Yan, J. Dayou, C.S. Sipaut, M.F.B. Madlan, "Friction and wear behaviour of AlCrN, TiN, TiAlN single-layer coating, and TiAlN/AlCrN, AlN/TiN nano-multilayer coatings in dry sliding", Procedia Engineering, Vol. 68, p.512 – 517 (2013)
DOI: 10.1016/j.proeng.2013.12.214
Google Scholar
[24]
N. Petkov, T. Bakalova, Hr. Bahchedzhiev, M. Krafka, L. Lemberk, "Modulation Period Effect on the CrN/TiN Coating Properties", Journal of Nano Research, Vol. 79, p.37 – 48 (2023)
DOI: 10.4028/p-uwlb2x
Google Scholar
[25]
EN 1071-13:2010, 2010. Advanced Technical Ceramics. Methods of Test for Ceramic Coatings. Determination of Wear Rate by the Pin-on-Disc Method.
DOI: 10.3403/30170505u
Google Scholar
[26]
K. Singh, P. K. Limaye, N. L. Soni, A. K. Grover, R. G. Agrawal, A. K. Suri, Wear studies of (Ti–Al)N coatings deposited by reactive magnetron sputtering, Wear 258 (2005) 1813–1824
DOI: 10.1016/j.wear.2004.12.023
Google Scholar
[27]
T. Bakalova, N. Petkov, Hr. Bahchedzhiev, P. Kejzlar, P. Zdobinská, "Tribologycal Properties of TiN/AlTiN and AlTiN/TiN nanomultilayer coatings", Manufacturing Technology, Vol. 16, No. 6, p.1234 – 1240 (2016) ISSN 1213-2489
DOI: 10.21062/ujep/x.2016/a/1213-2489/mt/16/6/1234
Google Scholar