[1]
C. Djilani, R. Zaghdoudi, A. Modarressi, M. Rogalski, F. Djazi, A. Lallam, Elimination of organic micropollutants by adsorption on activated carbon prepared from agricultural waste, J. Chem. Eng. 189 (2012) 203–212.
DOI: 10.1016/j.cej.2012.02.059
Google Scholar
[2]
S.M. Gupta, M. Tripathi, A review of TiO₂ nanoparticles, Chin. Sci. Bull. 56 (2011)1639-1657.
Google Scholar
[3]
S. Wang, S. Tang, H. Gao, X. Chen, H. Liu, C. Yu, Z. Yin, X. Zhao, X. Pan, H. Yang, Microstructure, optical, photoluminescence properties and the intrinsic mechanism of photoluminescence and photocatalysis for the Ba TiO2, Ba TiO2/ TiO2 and BaTiO₃/TiO₂/CeO₂ smart composites, Opt. Mater. 118 (2021) 111273.
DOI: 10.1016/j.optmat.2021.111273
Google Scholar
[4]
M.M. Muhsen, S.M.H. Al-Jawad, A.A. Taha, Gum Arabic-modified Mn-doped CuS nanoprisms for cancer photothermal treatment, Chem. Pap. 76 (11) (2022) 6821–6838.
DOI: 10.1007/s11696-022-02364-0
Google Scholar
[5]
N.M. Chauke, A. Ngqalakwezi, M. Raphulu, Transformative advancements in visible-light-activated titanium dioxide for industrial wastewater remediation, Int. J. Environ. Sci. Technol. (2025).
DOI: 10.1007/s13762-025-06397-2
Google Scholar
[6]
C.B. Anucha, I. Altin, E. Bacaksiz, V.N. Stathopoulos, Titanium dioxide (TiO2)-based photocatalyst materials activity enhancement for contaminants of emerging concern (CECs) degradation: In the light of modification strategies, Chem. Eng. J. Adv. 10 (2022) 100262.
DOI: 10.1016/j.ceja.2022.100262
Google Scholar
[7]
R.B. Rajput, S.N. Jamble, R.B. Kale, Solvothermal synthesis of anatase TiO2 for the detoxification of methyl orange dye with improved photodegradation efficiency, Eng. Sci. 17 (2021) 176–184.
DOI: 10.30919/es8d534
Google Scholar
[8]
J. Dhanalakshmi, D.P. Pandiyan, Photocatalytic degradation of methyl orange and bromophenol blue dyes in water using sol-gel synthesized TiO2 nanoparticles, Mater. Res. Express (2017).
DOI: 10.1088/2053-1591/aa85fd
Google Scholar
[9]
T. Kavitha, A. Rajendran, A. Durairajan, Synthesis and characterization of nanosized TiO2 powder derived from a sol–gel process in acidic conditions, Int. J. Eng. Sci. Emerg. Technol. 4 (2013) 90–95.
Google Scholar
[10]
A.A. Taha, S.M. Al-Jawad and A. M. Redha, Preparation and characterization of nanostructure CuSfor biological activity, MOD PHYS LETT B. 33(30) (2019) 1950374.
DOI: 10.1142/s0217984919503743
Google Scholar
[11]
J. Li, O. Ridge, J. Wu, Synthesis of nanoparticles via solvothermal and hydrothermal methods, in: Handbook of Nanoparticles, vol. 17, 2016, p.1–28.
Google Scholar
[12]
Y. Chen, D. Ma, G. He, S. Pan, Effects of pH on the photocatalytic activity and degradation mechanism of rhodamine B over fusiform Bi photocatalysts under visible light, Water 16 (2024) 2389.
DOI: 10.3390/w16172389
Google Scholar
[13]
V. Kaswan, H. Kaur, A comparative study of advanced oxidation processes for wastewater treatment, Water Pract. Technol. (2023).
Google Scholar
[14]
L. Saikia, P. Sengupta, M. Sengupta, Photocatalytic performance of ZnO nanomaterials for self-sensitized degradation of malachite green dye under solar light, Appl. Catal. A Gen. 490 (2015) 42–49.
DOI: 10.1016/j.apcata.2014.10.053
Google Scholar
[15]
O.N. Hussein, S.M.H. Al-Jawad, N.J. Imran, Efficient antibacterial activity enhancement in Fe/Mn co-doped CuS nanoflowers and nanosponges, Bull. Mater. Sci. 46 (2023) 139.
DOI: 10.1007/s12034-023-02964-w
Google Scholar
[16]
S.J. Singh, A. Patel, M. Khare, Temperature dependency on Ce-doped CuO nanoparticles: a comparative study via XRD line broadening analysis, Appl. Phys. A 128 (2022) 188.
DOI: 10.1007/s00339-022-05334-1
Google Scholar
[17]
M.S. Abd El-Sadek, H.S. Wasly, K.M. Batoo, X-ray peak profile analysis and optical properties of CdS nanoparticles synthesized via the hydrothermal method, Appl. Phys. A 125 (2019).
DOI: 10.1007/s00339-019-2576-y
Google Scholar
[18]
R.L. Narayana, M. Matheswaran, A.A. Aziz, P. Saravanan, Photocatalytic decolourization of basic green dye by pure and Fe, Co-doped TiO₂ under daylight illumination, Desalination 269 (2011) 249–253.
DOI: 10.1016/j.desal.2010.11.007
Google Scholar
[19]
S.G. Kumar, L.G. Devi, Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics, J. Phys. Chem. A 115 (2011) 13211–13241.
DOI: 10.1021/jp204364a
Google Scholar
[20]
H. Khojasteh, M. Salavati-Niasari, S. Mortazavi-Derazkola, Synthesis, characterization and photocatalytic properties of nickel-doped TiO2 and nickel titanate nanoparticles, J. Mater. Sci. Mater. Electron. 27 (2016) 3599–3607.
DOI: 10.1007/s10854-015-4197-3
Google Scholar
[21]
S. Wang, Y. Zhang, Y. Han, X. Yu, L. Deng, L. Hu, H. Gao, V.J. Angadi, S.F. Shaikh, M. Ubaidullah, Double internal magnetic fields significantly improve photocatalytic activity over Ba2.₅Sr2.₅ TiO2/BaFe2₂O₁₉/SrFe₁₂O₁₉ photocatalysts, Colloids Surf. A Physicochem. Eng. Asp. 705 (2025) 135608.
DOI: 10.1016/j.colsurfa.2024.135608
Google Scholar
[22]
N. Venkatachalam, M. Palanichamy, V. Murugesan, Sol–gel preparation and characterization of nanosize TiO₂: its photocatalytic performance, Mater. Chem. Phys. 104 (2007) 454–459.
DOI: 10.1016/j.matchemphys.2007.04.003
Google Scholar
[23]
K.M. Rahulan, S. Ganesan, P. Aruna, Synthesis and optical limiting studies of Au-doped TiO2 nanoparticles, Adv. Nat. Sci. Nanosci. Nanotechnol. 2 (2011) 025012.
DOI: 10.1088/2043-6262/2/2/025012
Google Scholar
[24]
A.A. Taha, S.M.H. Al-Jawad, L.F.A. Al-Barram, Improvement of cancer therapy by TAT peptide conjugated gold nanoparticles, J. Clust. Sci. 30 (2019) 403–414.
DOI: 10.1007/s10876-019-01497-9
Google Scholar
[25]
P. Singla, O.P. Pandey, K. Singh, Study of photocatalytic degradation of environmentally harmful phthalate esters using Ni-doped TiO2 nanoparticles, Int. J. Environ. Sci. Technol. 13 (2015) 849-856.
DOI: 10.1007/s13762-015-0909-8
Google Scholar
[26]
J.C. García-Prieto, L.A. González-Burciaga, J.B. Proal-Nájera, M. García-Roig, Study of influence factors in the evaluation of the performance of a photocatalytic fibre reactor (TiO₂/SiO₂) for the removal of organic pollutants from water, Catalysts 12 (2022) 122.
DOI: 10.3390/catal12020122
Google Scholar
[27]
F.C. Monteiro, T.S. Cunha, L.P. Andrade, Degradation of PAHs using TiO2 as a semiconductor in the heterogeneous photocatalysis process: A systematic review, J. Photochem. Photobiol. A Chem. 437 (2023) 114497.
Google Scholar
[28]
C. Zhu, X. Wang, Y. Zhang, Removal of gaseous carbon bisulfide using dielectric barrier discharge plasmas combined with TiO₂ coated attapulgite catalyst, Chem. Eng. J. 225 (2013) 567-573.
DOI: 10.1016/j.cej.2013.03.107
Google Scholar
[29]
I.K. Konstantinou, T.A. Albanis, Photocatalytic transformation of pesticides in aqueous titanium dioxide suspensions using artificial and solar light: intermediates and degradation pathways, Appl. Catal. B 1310 (2002) 1–17.
DOI: 10.1016/s0926-3373(02)00266-7
Google Scholar
[30]
E.S. Elmolla, M. Chaudhuri, Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/ TiO2 and UV/H2O2/ TiO2 photocatalysis, Desalination 252 (2010) 46-52.
DOI: 10.1016/j.desal.2009.11.003
Google Scholar