Impact of Titanium Dioxide Concentration and pH on the Removal of Organic and Pharmaceutical Pollutants in Wastewater

Article Preview

Abstract:

Nanostructured titanium dioxide (TiO2) was synthesized via a hydrothermal method to enhance photocatalytic degradation of organic and pharmaceutical contaminants in wastewater. Characterization techniques confirmed the formation of anatase-phase TiO2 with a tetragonal structure, spherical morphology, and an average crystallite size of 29 nm. The material exhibited a band gap of 3.1 eV. The TiO2 solution has proven to be very effective in accelerating the breakdown of pharmaceutical and organic contaminants in wastewater, as evidenced by several methods, including high-performance liquid chromatography (HPLC) and Gas chromatography (GC). Photocatalytic performance was evaluated under varying catalyst concentrations and pH levels. Optimal degradation efficiency (72%) was achieved at pH 10, demonstrating TiO2's potential as an effective photocatalyst for wastewater treatment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

85-100

Citation:

Online since:

December 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Djilani, R. Zaghdoudi, A. Modarressi, M. Rogalski, F. Djazi, A. Lallam, Elimination of organic micropollutants by adsorption on activated carbon prepared from agricultural waste, J. Chem. Eng. 189 (2012) 203–212.

DOI: 10.1016/j.cej.2012.02.059

Google Scholar

[2] S.M. Gupta, M. Tripathi, A review of TiO₂ nanoparticles, Chin. Sci. Bull. 56 (2011)1639-1657.

Google Scholar

[3] S. Wang, S. Tang, H. Gao, X. Chen, H. Liu, C. Yu, Z. Yin, X. Zhao, X. Pan, H. Yang, Microstructure, optical, photoluminescence properties and the intrinsic mechanism of photoluminescence and photocatalysis for the Ba TiO2, Ba TiO2/ TiO2 and BaTiO₃/TiO₂/CeO₂ smart composites, Opt. Mater. 118 (2021) 111273.

DOI: 10.1016/j.optmat.2021.111273

Google Scholar

[4] M.M. Muhsen, S.M.H. Al-Jawad, A.A. Taha, Gum Arabic-modified Mn-doped CuS nanoprisms for cancer photothermal treatment, Chem. Pap. 76 (11) (2022) 6821–6838.

DOI: 10.1007/s11696-022-02364-0

Google Scholar

[5] N.M. Chauke, A. Ngqalakwezi, M. Raphulu, Transformative advancements in visible-light-activated titanium dioxide for industrial wastewater remediation, Int. J. Environ. Sci. Technol. (2025).

DOI: 10.1007/s13762-025-06397-2

Google Scholar

[6] C.B. Anucha, I. Altin, E. Bacaksiz, V.N. Stathopoulos, Titanium dioxide (TiO2)-based photocatalyst materials activity enhancement for contaminants of emerging concern (CECs) degradation: In the light of modification strategies, Chem. Eng. J. Adv. 10 (2022) 100262.

DOI: 10.1016/j.ceja.2022.100262

Google Scholar

[7] R.B. Rajput, S.N. Jamble, R.B. Kale, Solvothermal synthesis of anatase TiO2 for the detoxification of methyl orange dye with improved photodegradation efficiency, Eng. Sci. 17 (2021) 176–184.

DOI: 10.30919/es8d534

Google Scholar

[8] J. Dhanalakshmi, D.P. Pandiyan, Photocatalytic degradation of methyl orange and bromophenol blue dyes in water using sol-gel synthesized TiO2 nanoparticles, Mater. Res. Express (2017).

DOI: 10.1088/2053-1591/aa85fd

Google Scholar

[9] T. Kavitha, A. Rajendran, A. Durairajan, Synthesis and characterization of nanosized TiO2 powder derived from a sol–gel process in acidic conditions, Int. J. Eng. Sci. Emerg. Technol. 4 (2013) 90–95.

Google Scholar

[10] A.A. Taha, S.M. Al-Jawad and A. M. Redha, Preparation and characterization of nanostructure CuSfor biological activity, MOD PHYS LETT B. 33(30) (2019) 1950374.

DOI: 10.1142/s0217984919503743

Google Scholar

[11] J. Li, O. Ridge, J. Wu, Synthesis of nanoparticles via solvothermal and hydrothermal methods, in: Handbook of Nanoparticles, vol. 17, 2016, p.1–28.

Google Scholar

[12] Y. Chen, D. Ma, G. He, S. Pan, Effects of pH on the photocatalytic activity and degradation mechanism of rhodamine B over fusiform Bi photocatalysts under visible light, Water 16 (2024) 2389.

DOI: 10.3390/w16172389

Google Scholar

[13] V. Kaswan, H. Kaur, A comparative study of advanced oxidation processes for wastewater treatment, Water Pract. Technol. (2023).

Google Scholar

[14] L. Saikia, P. Sengupta, M. Sengupta, Photocatalytic performance of ZnO nanomaterials for self-sensitized degradation of malachite green dye under solar light, Appl. Catal. A Gen. 490 (2015) 42–49.

DOI: 10.1016/j.apcata.2014.10.053

Google Scholar

[15] O.N. Hussein, S.M.H. Al-Jawad, N.J. Imran, Efficient antibacterial activity enhancement in Fe/Mn co-doped CuS nanoflowers and nanosponges, Bull. Mater. Sci. 46 (2023) 139.

DOI: 10.1007/s12034-023-02964-w

Google Scholar

[16] S.J. Singh, A. Patel, M. Khare, Temperature dependency on Ce-doped CuO nanoparticles: a comparative study via XRD line broadening analysis, Appl. Phys. A 128 (2022) 188.

DOI: 10.1007/s00339-022-05334-1

Google Scholar

[17] M.S. Abd El-Sadek, H.S. Wasly, K.M. Batoo, X-ray peak profile analysis and optical properties of CdS nanoparticles synthesized via the hydrothermal method, Appl. Phys. A 125 (2019).

DOI: 10.1007/s00339-019-2576-y

Google Scholar

[18] R.L. Narayana, M. Matheswaran, A.A. Aziz, P. Saravanan, Photocatalytic decolourization of basic green dye by pure and Fe, Co-doped TiO₂ under daylight illumination, Desalination 269 (2011) 249–253.

DOI: 10.1016/j.desal.2010.11.007

Google Scholar

[19] S.G. Kumar, L.G. Devi, Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics, J. Phys. Chem. A 115 (2011) 13211–13241.

DOI: 10.1021/jp204364a

Google Scholar

[20] H. Khojasteh, M. Salavati-Niasari, S. Mortazavi-Derazkola, Synthesis, characterization and photocatalytic properties of nickel-doped TiO2 and nickel titanate nanoparticles, J. Mater. Sci. Mater. Electron. 27 (2016) 3599–3607.

DOI: 10.1007/s10854-015-4197-3

Google Scholar

[21] S. Wang, Y. Zhang, Y. Han, X. Yu, L. Deng, L. Hu, H. Gao, V.J. Angadi, S.F. Shaikh, M. Ubaidullah, Double internal magnetic fields significantly improve photocatalytic activity over Ba2.₅Sr2.₅ TiO2/BaFe2₂O₁₉/SrFe₁₂O₁₉ photocatalysts, Colloids Surf. A Physicochem. Eng. Asp. 705 (2025) 135608.

DOI: 10.1016/j.colsurfa.2024.135608

Google Scholar

[22] N. Venkatachalam, M. Palanichamy, V. Murugesan, Sol–gel preparation and characterization of nanosize TiO₂: its photocatalytic performance, Mater. Chem. Phys. 104 (2007) 454–459.

DOI: 10.1016/j.matchemphys.2007.04.003

Google Scholar

[23] K.M. Rahulan, S. Ganesan, P. Aruna, Synthesis and optical limiting studies of Au-doped TiO2 nanoparticles, Adv. Nat. Sci. Nanosci. Nanotechnol. 2 (2011) 025012.

DOI: 10.1088/2043-6262/2/2/025012

Google Scholar

[24] A.A. Taha, S.M.H. Al-Jawad, L.F.A. Al-Barram, Improvement of cancer therapy by TAT peptide conjugated gold nanoparticles, J. Clust. Sci. 30 (2019) 403–414.

DOI: 10.1007/s10876-019-01497-9

Google Scholar

[25] P. Singla, O.P. Pandey, K. Singh, Study of photocatalytic degradation of environmentally harmful phthalate esters using Ni-doped TiO2 nanoparticles, Int. J. Environ. Sci. Technol. 13 (2015) 849-856.

DOI: 10.1007/s13762-015-0909-8

Google Scholar

[26] J.C. García-Prieto, L.A. González-Burciaga, J.B. Proal-Nájera, M. García-Roig, Study of influence factors in the evaluation of the performance of a photocatalytic fibre reactor (TiO₂/SiO₂) for the removal of organic pollutants from water, Catalysts 12 (2022) 122.

DOI: 10.3390/catal12020122

Google Scholar

[27] F.C. Monteiro, T.S. Cunha, L.P. Andrade, Degradation of PAHs using TiO2 as a semiconductor in the heterogeneous photocatalysis process: A systematic review, J. Photochem. Photobiol. A Chem. 437 (2023) 114497.

Google Scholar

[28] C. Zhu, X. Wang, Y. Zhang, Removal of gaseous carbon bisulfide using dielectric barrier discharge plasmas combined with TiO₂ coated attapulgite catalyst, Chem. Eng. J. 225 (2013) 567-573.

DOI: 10.1016/j.cej.2013.03.107

Google Scholar

[29] I.K. Konstantinou, T.A. Albanis, Photocatalytic transformation of pesticides in aqueous titanium dioxide suspensions using artificial and solar light: intermediates and degradation pathways, Appl. Catal. B 1310 (2002) 1–17.

DOI: 10.1016/s0926-3373(02)00266-7

Google Scholar

[30] E.S. Elmolla, M. Chaudhuri, Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/ TiO2 and UV/H2O2/ TiO2 photocatalysis, Desalination 252 (2010) 46-52.

DOI: 10.1016/j.desal.2009.11.003

Google Scholar