Influence of Post-Annealing on Some Properties of Confocal Radio Frequency Sputtered ZnO Thin Film

Article Preview

Abstract:

ZnO thin films were deposited on borosilicate glass substrates by confocal radio frequency (RF) magnetron sputtering and subsequently annealed in air at 300 °C and 500 °C for 60 min. The influence of thermal treatment on the structural, morphological, optical, and electrical properties was systematically investigated. X-ray diffraction (XRD) confirmed the formation of a hexagonal wurtzite phase with a pronounced (002) preferential orientation. Rietveld refinement analysis revealed that annealing led to a decrease in the lattice parameter c from 5.344 Å to 5.220 Å, an increase in crystallite size from 9.3 nm to 34.1 nm, and a reduction in microstrain from 0.0265 to 0.0027. Raman spectroscopy exhibited a sharper E2high mode at 438 cm-1 and a suppressed defect-related A₁(LO) mode (583 cm-1), evidencing enhanced crystallinity and defect passivation. Scanning electron microscopy (SEM) observations revealed grain coalescence and densification with increasing annealing temperature. The average optical transmittance improved from 70.8% to 82.2%, accompanied by a slight widening of the optical band gap from 3.22 eV to 3.27 eV. Hall measurements indicated a marked decrease in resistivity from 2.7 × 10-2 Ω·cm to 5 × 10-3 Ω·cm, yielding a maximum figure of merit of 1.68 × 10-3-1 at 500 °C. Overall, post-deposition annealing is shown to significantly enhance crystallinity, reduce structural defects, and improve the optoelectronic performance of ZnO thin films, confirming their suitability for transparent electronics and photovoltaic applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

15-30

Citation:

Online since:

December 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Minami, Chapter Five - Transparent conductive oxides for transparent electrode applications, Semiconduct. Semimet. 88 (2013) 159-200.

DOI: 10.1016/b978-0-12-396489-2.00005-9

Google Scholar

[2] W. Cui, F. Chen, Y. Li, X. Su, B. Sun, Status and perspectives of transparent conductive oxide films for silicon heterojunction solar cells, Mater. Today Nano 22, (2023) 100329.

DOI: 10.1016/j.mtnano.2023.100329

Google Scholar

[3] H. Wen, B. Weng, B. Wang,W. Xiao, X. Liu,Y. Wang, M. Zhang, H. Huang, Advancements in transparent conductive oxides for photoelectrochemical applications, Nanomaterials 14 (2024) 591.

DOI: 10.3390/nano14070591

Google Scholar

[4] A. Rayerfrancis, P.B. Bhargav, N. Ahmed, S. Bhattacharya, B. Chandra, S. Dhara, Sputtered AZO Thin Films for TCO and Back Reflector Applications in Improving the Efficiency of Thin Film a-Si:H Solar Cells, Silicon 9 (2017) 31-38.

DOI: 10.1007/s12633-015-9350-3

Google Scholar

[5] R.A. Afre, N. Sharma, M. Sharon, Transparent conducting oxide films for various applications: A review, Rev. Adv. Mater. Sci. 53 (2018) 79-89.

DOI: 10.1515/rams-2018-0006

Google Scholar

[6] P. Kumar, Recent advancement in different types of solar cell: Role of ZnO nanostructure to improve solar cell performance, AIP Conf. Proc. 2558 (2023) 020035.

DOI: 10.1063/5.0121296

Google Scholar

[7] C. Wang, G. Zhang, Q. Liu, S. Kang, S. Deng, J. Chen, Fabrication of ZnO nanowire cold cathode flat-panel x-ray source with a reflective anode, Nanomaterials 14 (2024) 1504.

DOI: 10.3390/nano14181504

Google Scholar

[8] Y. Lei, K. Feng, A. Zeng, H. Yang, L. Zhang, Z. Liu, Z. Chen, Sol-gel deposited ZnO substrate for the modulation of electrodeposited PEDOT nanostructures and enhancement of electrochromic stability, Appl. Surf. Sci. 681 (2025) 161480.

DOI: 10.1016/j.apsusc.2024.161480

Google Scholar

[9] C. Muiva, D.P. Sebuso, E. Muchuweni, Microstructural and optical properties of nanostructured Al/Ag co-doped ZnO thin films (AgxAl0.03ZnO0.97-x) by spray pyrolysis for optoelectronic applications, Phys. B: Condens. Matter. 690 (2024) 416206.

DOI: 10.1016/j.physb.2024.416206

Google Scholar

[10] M.-J. Jung, D. Kim, H.C. Kim, S. Kim, Y. Kim, S.-H. Kwon, W.-J. Lee, ZnO thin films with stable, tunable electrical and optical properties deposited by atomic layer deposition using Et2Zn:NEtMe2 precursor, Appl. Surf. Sci. 682 (2025) 161728.

DOI: 10.1016/j.apsusc.2024.161728

Google Scholar

[11] J. Pilz, A. Perrotta, G. Leising, A.M. Coclite, ZnO thin films grown by plasma-enhanced atomic layer deposition: material properties within and outside the "atomic layer deposition window", Phys. Status Solidi A 217 (2020) 1900256.

DOI: 10.1002/pssa.201900256

Google Scholar

[12] M. Bakry, W. Ismail, M. Abdelfatah, A. El-Shaer, Low-cost fabrication methods of ZnO nanorods and their physical and photoelectrochemical properties for optoelectronic applications, Sci. Rep. 14 (2024) 23788.

DOI: 10.1038/s41598-024-73352-5

Google Scholar

[13] D. Mendil, F. Challali, T. Touam, A. Chelouche, A.H. Souici, S. Ouhenia, D. Djouadi, Influence of growth time and substrate type on the microstructure and luminescence properties of ZnO thin films deposited by RF sputtering, J. Lum. 215 (2019) 116631.

DOI: 10.1016/j.jlumin.2019.116631

Google Scholar

[14] N. Hernandez-Como, A. Morales-Acevedo, M. Aleman, I. Mejia, M.A. Quevedo-Lopez, Al-doped ZnO thin films deposited by confocal sputtering as electrodes in ZnO-based thin-film transistors, Microelectron. Eng. 150 (2016) 26-31.

DOI: 10.1016/j.mee.2015.10.017

Google Scholar

[15] Y. Fang, M. Li, X. Zhao, B. Liu, The effect of vacuum annealing on the structures and optical and electric properties of the sputtered ZnO films, Phys. Status Solidi A 222 (2025) 2500105.

DOI: 10.1002/pssa.202500105

Google Scholar

[16] E. Sener, O. Bayram, U.C. Hasar, O. Simsek, Structural and optical properties of RF sputtered ZnO thin films: Annealing effect, Phys. B: Condens. Matter. 605, 15 (2021) 412421.

DOI: 10.1016/j.physb.2020.412421

Google Scholar

[17] B. Sharmila , M.K. Singha, P. Dwivedi, Impact of annealing on structural and optical properties of ZnO thin films, Microelectron. J. 135 (2023) 105759.

DOI: 10.1016/j.mejo.2023.105759

Google Scholar

[18] W.C. Lim, J.P. Singh, Y. Kim, J. Song, K.H. Chae, T.-Y. Seong, Effect of thermal annealing on the properties of ZnO thin films, Vacuum 183 (2021) 109776.

DOI: 10.1016/j.vacuum.2020.109776

Google Scholar

[19] R. Kumar, G. Kumar, O. Al-Dossary, A. Umar, ZnO nanostructured thin films: Depositions, properties and applications—A review, Mater. Express 5 (2015) 3-23.

DOI: 10.1166/mex.2015.1204

Google Scholar

[20] M.P. Gonullu, B. Nalcaci, E. Sarica, The role of aluminum doping and annealing on ZnO films: Physical and mechanical analysis, J. Alloys Compd. 1030 (2025) 180868.

DOI: 10.1016/j.jallcom.2025.180868

Google Scholar

[21] A. Frechilla, J. Frechilla, L. A. Angurel, F. Toldrá-Reig, F. Balas, E. Martínez, G.F. de La Fuente, D. Muñoz-Rojas, Laser annealing of transparent ZnO thin films: a route to improve electrical conductivity and oxygen sensing capabilities, RSC Appl. Interfaces 2025.

DOI: 10.1039/D5LF00076A

Google Scholar

[22] C, Rajkumar, A. Arulraj, Enhanced photoconductive response of ZnO thin films with the impact of annealing temperatures on structural and optical properties. Sci. Rep. (2025) 1528851.

DOI: 10.1038/s41598-025-02177-7

Google Scholar

[23] M.M. El-Desoky, M.A. Ali, G. Afifi, H. Imam, Characterization and optical properties of annealed ZnO nanoparticles prepared by microwave irradiation, Front. Sci. Res. Technol. 1 (2020) 1-7.

DOI: 10.21608/fsrt.2019.18419.1000

Google Scholar

[24] S. Bakshi, S. Rani, Investigating the impact of annealing and thickness on the optical and electrical characteristics of ZnO (TCO) for optoelectronics devices, Int. J. Thin Film Sci. Technol. 14 (2025) 139-149.

DOI: 10.18576/ijtfst/140210

Google Scholar

[25] J.-N. Shen, Y.-B. Zeng, M.-H. Xu, L.-H. Zhu, B.-L Liu, H. Guo, Effects of annealing parameters on residual stress and piezoelectric performance of ZnO thin films studied by X-ray diffraction and atomic force microscopy, J. Appl. Cryst. 52 (2019) 951-959.

DOI: 10.1107/s1600576719010124

Google Scholar

[26] L. Lutterotti, S. Matthies, H. Wenk, MAUD: a friendly Java program for material analysis using diffraction, CPD Newsletter 21 (1999) 14-15.

Google Scholar

[27] M. Salah, S. Azizi, A. Boukhachem, C. Khaldi, M. Amlouk, J. Lamloumi, Rietveld refinement of X-ray diffraction, impedance spectroscopy and dielectric relaxation of Li-doped ZnO-sprayed thin films, Appl. Phys. A 125, (2019) 615.

DOI: 10.1007/s00339-019-2911-3

Google Scholar

[28] A.K. Tangra, S. Singh, N.X. Sun, G.S. Lotey, Investigation of structural, Raman and photoluminescence properties of novel material: KFeO2 nanoparticles, J. Alloys Compd. 778 (2019) 47-52.

DOI: 10.1016/j.jallcom.2018.11.059

Google Scholar

[29] R. Cuscó, E. Alarcón-Lladó, J. Ibáñez, L. Artús, J. Jiménez, B. Wang, M.J. Callahan, Temperature dependence of Raman scattering in ZnO, Phys. Rev. B 75 (2007) 165202.

DOI: 10.1103/physrevb.75.165202

Google Scholar

[30] J. Das, D.K. Mishra , D.R. Sahu, B.K. Roul, Influence of Ni doping on magnetic behavior of Mn doped ZnO, Mater. Lett. 65 (2011) 598-601.

DOI: 10.1016/j.matlet.2010.11.044

Google Scholar

[31] M.-J. Zhao, Z.-T. Sun, Z.-X. Zhang, X.-P. Geng, W.-Y. Wu, S.-Y. Lien, W.-Z. Zhu, Suppression of oxygen vacancy defects in sALD-ZnO films annealed in different conditions, Materials 13 (2020) 3910.

DOI: 10.3390/ma13183910

Google Scholar

[32] Q.C. Bui, B. Salem, H. Roussel, X. Mescot, Y. Guerfi b, C. Jiménez , V. Consonni, G. Ardila, Effects of thermal annealing on the structural and electrical properties of ZnO thin films for boosting their piezoelectric response, Journal of Alloys and Compounds 870 (2021) 159512.

DOI: 10.1016/j.jallcom.2021.159512

Google Scholar

[33] P. Karnati, A. Haque, M.F.N. Taufique, K. Ghosh, A systematic study on the structural and optical properties of vertically aligned zinc oxide nanorods grown by high pressure assisted pulsed laser deposition technique, Nanomaterials 8 (2018) 62.

DOI: 10.3390/nano8020062

Google Scholar

[34] F. Challali, D. Mendil, T. Touam, T. Chauveau, V. Bockelée, A.G. Sanchez, A. Chelouche, M. Besland, Effect of RF sputtering power and vacuum annealing on the properties of AZO thin films prepared from ceramic target in confocal configuration, Mater. Sci. Semicond. Process. 118 (2020) 105217.

DOI: 10.1016/j.mssp.2020.105217

Google Scholar

[35] M.Wang, E.J. Kim, S. Kim, J.S. Chung, I.-K.Yoo, E.W. Shin, S.H. Hahn, C. Park, Optical and structural properties of sol–gel prepared MgZnO alloy thin films, Thin Solid Films 516 (2008) 1124-1129.

DOI: 10.1016/j.tsf.2007.05.039

Google Scholar

[36] T. Touam, M. Atoui, I. Hadjoub, A. Chelouche, B. Boudine, A. Fischer, A. Boudrioua, A. Doghmane, Effects of dip-coating speed and annealing temperature on structural, morphological and optical properties of sol-gel nano-structured TiO2 thin films, Eur. Phys. J. Appl. Phys. 67 (2014) 30302.

DOI: 10.1051/epjap/2014140228

Google Scholar

[37] W.C. Lim, J.P. Singh, Y. Kim, J. Song, K.H. Chae, T.-Y. Seong, Effect of thermal annealing on the properties of ZnO thin films, Vacuum 183 (2021) 109776.

DOI: 10.1016/j.vacuum.2020.109776

Google Scholar

[38] E. Burstein, Anomalous optical absorption limit in InSb, Phys. Rev. 93 (1954) 632-647.

DOI: 10.1103/physrev.93.632

Google Scholar

[39] T. S Moss, The interpretation of the properties of indium antimonide, Proc. Phys. Soc. B 67 (1954) 775-782.

DOI: 10.1088/0370-1301/67/10/306

Google Scholar

[40] Y.M. Hu, J.Y. Li, N.Y. Chen, C.Y. Chen, T.C. Han, C.C. Yu, Effect of sputtering power on crystallinity, intrinsic defects, and optical and electrical properties of Al-doped ZnO transparent conducting thin films for optoelectronic devices, J. Appl. Phys. 121 (2017) 085302.

DOI: 10.1063/1.4977104

Google Scholar

[41] K. Ogata, K. Sakurai, Sz. Fujita, Sg. Fujita, K. Matsushige, Effects of thermal annealing of ZnO layers grown by MBE, J. Cryst. Growth 214–215 (2000) 312-315.

DOI: 10.1016/s0022-0248(00)00099-3

Google Scholar

[42] G.R Yi, H.S. Kim, D.H. Lee, B. Kim, C.K. Kim, Effect of annealing on performance of ZnO thin film transistors, Mol. Cryst. Liq. Cryst. 678 (2019) 43-52.

DOI: 10.1080/15421406.2019.1597527

Google Scholar

[43] J. Kennedy, P.P. Murmu, J. Leveneur, A. Markwitz, J. Futter, Controlling preferred orientation and electrical conductivity of zinc oxide thin films by post growth annealing treatment, Appl. Surf. Sci. 367 (2016) 52-58.

DOI: 10.1016/j.apsusc.2016.01.160

Google Scholar

[44] N. Al-Khalli, M.F.A. Aboud, A.A. Bagabas, N. Debbar, Structural, optical, and electrical characteristics of thermal treated ZnO thin films deposited by RF sputtering on glass substrates. Mater. Trans. 62 (2021) 915-920.

DOI: 10.2320/matertrans.mt-m2020350

Google Scholar

[45] G.Z. Xing, B. Yao, C.X. Cong, T. Yang, Y.P. Xie, B.H. Li, D.Z. Shen, Effect of annealing on conductivity behavior of undoped zinc oxide prepared by rf magnetron sputtering. J. Alloys Compd. 457 (2008) 36-41.

DOI: 10.1016/j.jallcom.2007.03.071

Google Scholar

[46] A. Alshoaibi, The influence of annealing temperature on the microstructure and electrical properties of sputtered ZnO thin films. Inorganics 12 (2024) 236.

DOI: 10.3390/inorganics12090236

Google Scholar

[47] G. Haacke, New figure of merit for transparent conductors, J. Appl. Phys. 47 (1976) 4086-4089.

DOI: 10.1063/1.323240

Google Scholar