[1]
T. Minami, Chapter Five - Transparent conductive oxides for transparent electrode applications, Semiconduct. Semimet. 88 (2013) 159-200.
DOI: 10.1016/b978-0-12-396489-2.00005-9
Google Scholar
[2]
W. Cui, F. Chen, Y. Li, X. Su, B. Sun, Status and perspectives of transparent conductive oxide films for silicon heterojunction solar cells, Mater. Today Nano 22, (2023) 100329.
DOI: 10.1016/j.mtnano.2023.100329
Google Scholar
[3]
H. Wen, B. Weng, B. Wang,W. Xiao, X. Liu,Y. Wang, M. Zhang, H. Huang, Advancements in transparent conductive oxides for photoelectrochemical applications, Nanomaterials 14 (2024) 591.
DOI: 10.3390/nano14070591
Google Scholar
[4]
A. Rayerfrancis, P.B. Bhargav, N. Ahmed, S. Bhattacharya, B. Chandra, S. Dhara, Sputtered AZO Thin Films for TCO and Back Reflector Applications in Improving the Efficiency of Thin Film a-Si:H Solar Cells, Silicon 9 (2017) 31-38.
DOI: 10.1007/s12633-015-9350-3
Google Scholar
[5]
R.A. Afre, N. Sharma, M. Sharon, Transparent conducting oxide films for various applications: A review, Rev. Adv. Mater. Sci. 53 (2018) 79-89.
DOI: 10.1515/rams-2018-0006
Google Scholar
[6]
P. Kumar, Recent advancement in different types of solar cell: Role of ZnO nanostructure to improve solar cell performance, AIP Conf. Proc. 2558 (2023) 020035.
DOI: 10.1063/5.0121296
Google Scholar
[7]
C. Wang, G. Zhang, Q. Liu, S. Kang, S. Deng, J. Chen, Fabrication of ZnO nanowire cold cathode flat-panel x-ray source with a reflective anode, Nanomaterials 14 (2024) 1504.
DOI: 10.3390/nano14181504
Google Scholar
[8]
Y. Lei, K. Feng, A. Zeng, H. Yang, L. Zhang, Z. Liu, Z. Chen, Sol-gel deposited ZnO substrate for the modulation of electrodeposited PEDOT nanostructures and enhancement of electrochromic stability, Appl. Surf. Sci. 681 (2025) 161480.
DOI: 10.1016/j.apsusc.2024.161480
Google Scholar
[9]
C. Muiva, D.P. Sebuso, E. Muchuweni, Microstructural and optical properties of nanostructured Al/Ag co-doped ZnO thin films (AgxAl0.03ZnO0.97-x) by spray pyrolysis for optoelectronic applications, Phys. B: Condens. Matter. 690 (2024) 416206.
DOI: 10.1016/j.physb.2024.416206
Google Scholar
[10]
M.-J. Jung, D. Kim, H.C. Kim, S. Kim, Y. Kim, S.-H. Kwon, W.-J. Lee, ZnO thin films with stable, tunable electrical and optical properties deposited by atomic layer deposition using Et2Zn:NEtMe2 precursor, Appl. Surf. Sci. 682 (2025) 161728.
DOI: 10.1016/j.apsusc.2024.161728
Google Scholar
[11]
J. Pilz, A. Perrotta, G. Leising, A.M. Coclite, ZnO thin films grown by plasma-enhanced atomic layer deposition: material properties within and outside the "atomic layer deposition window", Phys. Status Solidi A 217 (2020) 1900256.
DOI: 10.1002/pssa.201900256
Google Scholar
[12]
M. Bakry, W. Ismail, M. Abdelfatah, A. El-Shaer, Low-cost fabrication methods of ZnO nanorods and their physical and photoelectrochemical properties for optoelectronic applications, Sci. Rep. 14 (2024) 23788.
DOI: 10.1038/s41598-024-73352-5
Google Scholar
[13]
D. Mendil, F. Challali, T. Touam, A. Chelouche, A.H. Souici, S. Ouhenia, D. Djouadi, Influence of growth time and substrate type on the microstructure and luminescence properties of ZnO thin films deposited by RF sputtering, J. Lum. 215 (2019) 116631.
DOI: 10.1016/j.jlumin.2019.116631
Google Scholar
[14]
N. Hernandez-Como, A. Morales-Acevedo, M. Aleman, I. Mejia, M.A. Quevedo-Lopez, Al-doped ZnO thin films deposited by confocal sputtering as electrodes in ZnO-based thin-film transistors, Microelectron. Eng. 150 (2016) 26-31.
DOI: 10.1016/j.mee.2015.10.017
Google Scholar
[15]
Y. Fang, M. Li, X. Zhao, B. Liu, The effect of vacuum annealing on the structures and optical and electric properties of the sputtered ZnO films, Phys. Status Solidi A 222 (2025) 2500105.
DOI: 10.1002/pssa.202500105
Google Scholar
[16]
E. Sener, O. Bayram, U.C. Hasar, O. Simsek, Structural and optical properties of RF sputtered ZnO thin films: Annealing effect, Phys. B: Condens. Matter. 605, 15 (2021) 412421.
DOI: 10.1016/j.physb.2020.412421
Google Scholar
[17]
B. Sharmila , M.K. Singha, P. Dwivedi, Impact of annealing on structural and optical properties of ZnO thin films, Microelectron. J. 135 (2023) 105759.
DOI: 10.1016/j.mejo.2023.105759
Google Scholar
[18]
W.C. Lim, J.P. Singh, Y. Kim, J. Song, K.H. Chae, T.-Y. Seong, Effect of thermal annealing on the properties of ZnO thin films, Vacuum 183 (2021) 109776.
DOI: 10.1016/j.vacuum.2020.109776
Google Scholar
[19]
R. Kumar, G. Kumar, O. Al-Dossary, A. Umar, ZnO nanostructured thin films: Depositions, properties and applications—A review, Mater. Express 5 (2015) 3-23.
DOI: 10.1166/mex.2015.1204
Google Scholar
[20]
M.P. Gonullu, B. Nalcaci, E. Sarica, The role of aluminum doping and annealing on ZnO films: Physical and mechanical analysis, J. Alloys Compd. 1030 (2025) 180868.
DOI: 10.1016/j.jallcom.2025.180868
Google Scholar
[21]
A. Frechilla, J. Frechilla, L. A. Angurel, F. Toldrá-Reig, F. Balas, E. Martínez, G.F. de La Fuente, D. Muñoz-Rojas, Laser annealing of transparent ZnO thin films: a route to improve electrical conductivity and oxygen sensing capabilities, RSC Appl. Interfaces 2025.
DOI: 10.1039/D5LF00076A
Google Scholar
[22]
C, Rajkumar, A. Arulraj, Enhanced photoconductive response of ZnO thin films with the impact of annealing temperatures on structural and optical properties. Sci. Rep. (2025) 1528851.
DOI: 10.1038/s41598-025-02177-7
Google Scholar
[23]
M.M. El-Desoky, M.A. Ali, G. Afifi, H. Imam, Characterization and optical properties of annealed ZnO nanoparticles prepared by microwave irradiation, Front. Sci. Res. Technol. 1 (2020) 1-7.
DOI: 10.21608/fsrt.2019.18419.1000
Google Scholar
[24]
S. Bakshi, S. Rani, Investigating the impact of annealing and thickness on the optical and electrical characteristics of ZnO (TCO) for optoelectronics devices, Int. J. Thin Film Sci. Technol. 14 (2025) 139-149.
DOI: 10.18576/ijtfst/140210
Google Scholar
[25]
J.-N. Shen, Y.-B. Zeng, M.-H. Xu, L.-H. Zhu, B.-L Liu, H. Guo, Effects of annealing parameters on residual stress and piezoelectric performance of ZnO thin films studied by X-ray diffraction and atomic force microscopy, J. Appl. Cryst. 52 (2019) 951-959.
DOI: 10.1107/s1600576719010124
Google Scholar
[26]
L. Lutterotti, S. Matthies, H. Wenk, MAUD: a friendly Java program for material analysis using diffraction, CPD Newsletter 21 (1999) 14-15.
Google Scholar
[27]
M. Salah, S. Azizi, A. Boukhachem, C. Khaldi, M. Amlouk, J. Lamloumi, Rietveld refinement of X-ray diffraction, impedance spectroscopy and dielectric relaxation of Li-doped ZnO-sprayed thin films, Appl. Phys. A 125, (2019) 615.
DOI: 10.1007/s00339-019-2911-3
Google Scholar
[28]
A.K. Tangra, S. Singh, N.X. Sun, G.S. Lotey, Investigation of structural, Raman and photoluminescence properties of novel material: KFeO2 nanoparticles, J. Alloys Compd. 778 (2019) 47-52.
DOI: 10.1016/j.jallcom.2018.11.059
Google Scholar
[29]
R. Cuscó, E. Alarcón-Lladó, J. Ibáñez, L. Artús, J. Jiménez, B. Wang, M.J. Callahan, Temperature dependence of Raman scattering in ZnO, Phys. Rev. B 75 (2007) 165202.
DOI: 10.1103/physrevb.75.165202
Google Scholar
[30]
J. Das, D.K. Mishra , D.R. Sahu, B.K. Roul, Influence of Ni doping on magnetic behavior of Mn doped ZnO, Mater. Lett. 65 (2011) 598-601.
DOI: 10.1016/j.matlet.2010.11.044
Google Scholar
[31]
M.-J. Zhao, Z.-T. Sun, Z.-X. Zhang, X.-P. Geng, W.-Y. Wu, S.-Y. Lien, W.-Z. Zhu, Suppression of oxygen vacancy defects in sALD-ZnO films annealed in different conditions, Materials 13 (2020) 3910.
DOI: 10.3390/ma13183910
Google Scholar
[32]
Q.C. Bui, B. Salem, H. Roussel, X. Mescot, Y. Guerfi b, C. Jiménez , V. Consonni, G. Ardila, Effects of thermal annealing on the structural and electrical properties of ZnO thin films for boosting their piezoelectric response, Journal of Alloys and Compounds 870 (2021) 159512.
DOI: 10.1016/j.jallcom.2021.159512
Google Scholar
[33]
P. Karnati, A. Haque, M.F.N. Taufique, K. Ghosh, A systematic study on the structural and optical properties of vertically aligned zinc oxide nanorods grown by high pressure assisted pulsed laser deposition technique, Nanomaterials 8 (2018) 62.
DOI: 10.3390/nano8020062
Google Scholar
[34]
F. Challali, D. Mendil, T. Touam, T. Chauveau, V. Bockelée, A.G. Sanchez, A. Chelouche, M. Besland, Effect of RF sputtering power and vacuum annealing on the properties of AZO thin films prepared from ceramic target in confocal configuration, Mater. Sci. Semicond. Process. 118 (2020) 105217.
DOI: 10.1016/j.mssp.2020.105217
Google Scholar
[35]
M.Wang, E.J. Kim, S. Kim, J.S. Chung, I.-K.Yoo, E.W. Shin, S.H. Hahn, C. Park, Optical and structural properties of sol–gel prepared MgZnO alloy thin films, Thin Solid Films 516 (2008) 1124-1129.
DOI: 10.1016/j.tsf.2007.05.039
Google Scholar
[36]
T. Touam, M. Atoui, I. Hadjoub, A. Chelouche, B. Boudine, A. Fischer, A. Boudrioua, A. Doghmane, Effects of dip-coating speed and annealing temperature on structural, morphological and optical properties of sol-gel nano-structured TiO2 thin films, Eur. Phys. J. Appl. Phys. 67 (2014) 30302.
DOI: 10.1051/epjap/2014140228
Google Scholar
[37]
W.C. Lim, J.P. Singh, Y. Kim, J. Song, K.H. Chae, T.-Y. Seong, Effect of thermal annealing on the properties of ZnO thin films, Vacuum 183 (2021) 109776.
DOI: 10.1016/j.vacuum.2020.109776
Google Scholar
[38]
E. Burstein, Anomalous optical absorption limit in InSb, Phys. Rev. 93 (1954) 632-647.
DOI: 10.1103/physrev.93.632
Google Scholar
[39]
T. S Moss, The interpretation of the properties of indium antimonide, Proc. Phys. Soc. B 67 (1954) 775-782.
DOI: 10.1088/0370-1301/67/10/306
Google Scholar
[40]
Y.M. Hu, J.Y. Li, N.Y. Chen, C.Y. Chen, T.C. Han, C.C. Yu, Effect of sputtering power on crystallinity, intrinsic defects, and optical and electrical properties of Al-doped ZnO transparent conducting thin films for optoelectronic devices, J. Appl. Phys. 121 (2017) 085302.
DOI: 10.1063/1.4977104
Google Scholar
[41]
K. Ogata, K. Sakurai, Sz. Fujita, Sg. Fujita, K. Matsushige, Effects of thermal annealing of ZnO layers grown by MBE, J. Cryst. Growth 214–215 (2000) 312-315.
DOI: 10.1016/s0022-0248(00)00099-3
Google Scholar
[42]
G.R Yi, H.S. Kim, D.H. Lee, B. Kim, C.K. Kim, Effect of annealing on performance of ZnO thin film transistors, Mol. Cryst. Liq. Cryst. 678 (2019) 43-52.
DOI: 10.1080/15421406.2019.1597527
Google Scholar
[43]
J. Kennedy, P.P. Murmu, J. Leveneur, A. Markwitz, J. Futter, Controlling preferred orientation and electrical conductivity of zinc oxide thin films by post growth annealing treatment, Appl. Surf. Sci. 367 (2016) 52-58.
DOI: 10.1016/j.apsusc.2016.01.160
Google Scholar
[44]
N. Al-Khalli, M.F.A. Aboud, A.A. Bagabas, N. Debbar, Structural, optical, and electrical characteristics of thermal treated ZnO thin films deposited by RF sputtering on glass substrates. Mater. Trans. 62 (2021) 915-920.
DOI: 10.2320/matertrans.mt-m2020350
Google Scholar
[45]
G.Z. Xing, B. Yao, C.X. Cong, T. Yang, Y.P. Xie, B.H. Li, D.Z. Shen, Effect of annealing on conductivity behavior of undoped zinc oxide prepared by rf magnetron sputtering. J. Alloys Compd. 457 (2008) 36-41.
DOI: 10.1016/j.jallcom.2007.03.071
Google Scholar
[46]
A. Alshoaibi, The influence of annealing temperature on the microstructure and electrical properties of sputtered ZnO thin films. Inorganics 12 (2024) 236.
DOI: 10.3390/inorganics12090236
Google Scholar
[47]
G. Haacke, New figure of merit for transparent conductors, J. Appl. Phys. 47 (1976) 4086-4089.
DOI: 10.1063/1.323240
Google Scholar