Nanostructured Fe-doped La0.3Sr0.7TiO3-δ/Ce0.8Gd0.18Ca0.02O2-δ nanocomposite for electrocatalytic ammonia synthesis from humid N₂

Article Preview

Abstract:

The development of sustainable ammonia synthesis methods is crucial for reducing the environmental impact of the energy-intensive Haber–Bosch process. However, creating efficient and cost-effective electrocatalysts for ammonia synthesis remains a significant challenge, primarily due to competition from the hydrogen evolution reaction (HER), which diverts current away from ammonia production and reduces Faradaic efficiency. This study investigates the electrocatalytic performance of a La₀.₃Sr₀.₇Ti₀.₈Fe₀.₂O₃-δ and Ce₀.₈Gd₀.₁₈Ca₀.₀₂O₂-δ (LSTF–CGDC) composite cathode for green ammonia production from humid nitrogen (3% H₂O) under ambient pressure. Synthesized via a sol–gel method and characterized using X-ray diffraction (XRD), the composite exhibited high structural stability and phase compatibility. Ammonia synthesis was achieved across a temperature range of 375–450 °C and applied voltages of 1.2–1.8 V, with a peak production rate of 4.0 × 10⁻¹¹ mol s⁻¹ cm⁻² at 425 °C and 1.4 V. Despite these promising results, the Faradaic efficiency remained low (~0.07%) due to persistent HER competition. This study underscores the potential of non-noble perovskite-based catalysts for sustainable ammonia production and highlights the need for further optimization in both selectivity and efficiency.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

69-84

Citation:

Online since:

December 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Wang, T. Li, F. Gong, M.H.D. Othman and R. Xiao, Ammonia as a green energy carrier: Electrochemical synthesis and direct ammonia fuel cell - a comprehensive review. Fuel Process. Technol., 235 (2022) 107380.

DOI: 10.1016/j.fuproc.2022.107380

Google Scholar

[2] S. Ghavam, M. Vahdati, I. Wilson and P. Styring, Sustainable ammonia production processes. Front Energy Res, 9 (2021) 580808.

DOI: 10.3389/fenrg.2021.580808

Google Scholar

[3] U.S. Geological Survey. Mineral commodity summaries (2020). 200.

Google Scholar

[4] T. Zhang, R. Zhou, S. Zhang, R. Zhou, J. Ding, F. Li, J. Hong, L. Dou, T. Shao, A.B. Murphy, K. Ostrikov and P.J. Cullen, Sustainable Ammonia Synthesis from Nitrogen and Water by One-Step Plasma Catalysis. Energy Environ Mater, 6 (2023) e12344.

DOI: 10.1002/eem2.12344

Google Scholar

[5] S. Mahmood, S. Iqbal, Z. Wang, M. Ammar, M.J. Iqbal, A. Bahadur, N.S. Awwad and H.A. Ibrahium, Emerging electrocatalysts for green ammonia production: Recent progress and future outlook. Arab J Chem, 17 (2024) 105950.

DOI: 10.1016/j.arabjc.2024.105950

Google Scholar

[6] A.E. Yüzbaşıoğlu, C. Avşar and A.O. Gezerman, The current situation in the use of ammonia as a sustainable energy source and its industrial potential.  Curr Res Green Sustain, 5 (2022) 100307.

DOI: 10.1016/j.crgsc.2022.100307

Google Scholar

[7] J. Nan, Y. Fang, K. Rong, Y. Liu and S. Dong, Vacancy engineering of BiFeO3 perovskite for low-barrier electrochemical nitrogen fixation. Appl Catal B: Environ, 357 (2024) 124328.

DOI: 10.1016/j.apcatb.2024.124328

Google Scholar

[8] H. Xu, K. Ithisuphalap, Y. Li, S. Mukherjee, J. Lattimer, G. Soloveichik and G. Wu, Electrochemical ammonia synthesis through N2 and H2O under ambient conditions: Theory, practices, and challenges for catalysts and electrolytes. Nano Energy, 69 (2020) 104469.

DOI: 10.1016/j.nanoen.2020.104469

Google Scholar

[9] J. Humphreys and S. Tao, Advancements in Green Ammonia Production and Utilisation Technologies. Johns Matthey Technol Rev, 68 (2024) 280-292.

DOI: 10.1595/205651324x16946999404542

Google Scholar

[10] S. Ullah, A. Ahmad, H. Cheng, A. Ullah Jan, D. Cui and L. Li, Emerging applications of perovskite oxides in electrochemical reduction of carcinogenic nitrate to ammonia: a recent review. Inorg Chem Front, 11 (2024) 7204-7237.

DOI: 10.1039/d4qi01638f

Google Scholar

[11] K. Chu, J. Qin, H. Zhu, M. De Ras, C. Wang, L. Xiong, L. Zhang, N. Zhang, J.A. Martens and J. Hofkens, High-entropy perovskite oxides: A versatile class of materials for nitrogen reduction reactions. Sci China Mater, 65 (2022) 2711-2720.

DOI: 10.1007/s40843-022-2021-y

Google Scholar

[12] K. Chu, F. Liu, J. Zhu, H. Fu, H. Zhu, Y. Zhu, Y. Zhang, F. Lai and T. Liu, A General Strategy to Boost Electrocatalytic Nitrogen Reduction on Perovskite Oxides via the Oxygen Vacancies Derived from A-Site Deficiency. Adv Eng. Mater, 11 (2021) 2003799.

DOI: 10.1002/aenm.202003799

Google Scholar

[13] X. Guo, H. Du, F. Qu and J. Li, Recent progress in electrocatalytic nitrogen reduction. J Mater Chem A, 7 (2019) 3531-3543.

DOI: 10.1039/c8ta11201k

Google Scholar

[14] G. Hai, Z. Fu, X. Liu and X. Huang, Recent progress in electrocatalytic reduction of nitrogen to ammonia. Chin J Catal, 60 (2024) 107-127.

DOI: 10.1016/s1872-2067(23)64640-6

Google Scholar

[15] A. Januszewska-Kubsik, S. Podsiadło, W. Pudełko and M. Siekierski, Metal nitrides as electrocatalysts in green ammonia synthesis. Appl Phys A, 130 (2024) 771.

DOI: 10.1007/s00339-024-07918-5

Google Scholar

[16] G. Qing, R. Ghazfar, S.T. Jackowski, F. Habibzadeh, M.M. Ashtiani, C.-P. Chen, M.R. Smith, III and T.W. Hamann, Recent Advances and Challenges of Electrocatalytic N2 Reduction to Ammonia. Chem. Rev., 120 (2020) 5437-5516.

DOI: 10.1021/acs.chemrev.9b00659

Google Scholar

[17] J. Zhao and F. Zhang, Bi-exsolved perovskites promote ammonia synthesis with HER inhibition via a protonic ceramic electrolysis cell. Mater Sci Eng.,B, 313 (2025) 117884.

DOI: 10.1016/j.mseb.2024.117884

Google Scholar

[18] J. Chen, W. Gao, L. Zhu, H. Tao, S. Feng, H. Cao, J. Guo, Y. Chen and P. Chen, A mixed proton–electron-conducting cathode with a Ru nanoparticle catalyst for electrochemical ammonia synthesis based on a proton-conducting BZCYYb electrolyte. J Mater Chem A, 12 (2024) 26667-26677.

DOI: 10.1039/d4ta04520c

Google Scholar

[19] J.T.S. Irvine, S. Wilson, S. Amnuaypanich, G.J. Irvine, M.C. Verbraeken, K. Nowicki and G.M. Carins, Hydrogen ionic conductors and ammonia conversions. Faraday Discuss., 243 (2023) 296-306.

DOI: 10.1039/d3fd00012e

Google Scholar

[20] D.S. Yun, J.H. Joo, J.H. Yu, H.C. Yoon, J.-N. Kim and C.-Y. Yoo, Electrochemical ammonia synthesis from steam and nitrogen using proton conducting yttrium doped barium zirconate electrolyte with silver, platinum, and lanthanum strontium cobalt ferrite electrocatalyst. J. Power Sources, 284 (2015) 245-251.

DOI: 10.1016/j.jpowsour.2015.03.002

Google Scholar

[21] A. Skodra and M. Stoukides, Electrocatalytic synthesis of ammonia from steam and nitrogen at atmospheric pressure. Solid State Ionics, 180 (2009) 1332-1336.

DOI: 10.1016/j.ssi.2009.08.001

Google Scholar

[22] F. Kosaka, N. Noda, T. Nakamura and J. Otomo, In situ formation of Ru nanoparticles on La₁–ₓSrₓTiO₃-based mixed conducting electrodes and their application in electrochemical synthesis of ammonia using a proton-conducting solid electrolyte. J Mater Sci, 52 (2017) 2825-2835.

DOI: 10.1007/s10853-016-0573-5

Google Scholar

[23] N. Kamitani, S. Jeong, H. Habazaki and Y. Aoki, Vanadium Nitride Is an Efficient Hydrogen-Diffusive Cathode for Green Ammonia Electrochemical Synthesis by Protonic Solid Oxide Electrolysis Cells. ACS Sustain Chem Eng, 12 (2024) 2100-2109.

DOI: 10.1021/acssuschemeng.3c07736

Google Scholar

[24] I.A. Amar, R. Lan, C.T.G. Petit and S. Tao, Solid-state electrochemical synthesis of ammonia: a review. J Solid State Electrochem, 15 (2011) 1845-1860.

DOI: 10.1007/s10008-011-1376-x

Google Scholar

[25] S. Giddey, S.P.S. Badwal and A. Kulkarni, Review of electrochemical ammonia production technologies and materials. Int. J. Hydrogen Energy, 38 (2013) 14576-14594.

DOI: 10.1016/j.ijhydene.2013.09.054

Google Scholar

[26] I. Amar, Synthesis of ammonia from water and nitrogen using a compo-site cathode based on La₀.₆Ba₀.₄Fe₀.₈Cu₀.₂O₃–δ–Ce₀.₈Gd₀.₁₈Ca₀.₀₂O₂–δ: Original scientific paper. J Electrochem Sci Eng, 13 (2022) 393-405.

DOI: 10.5599/jese.1535

Google Scholar

[27] I.A. Amar, Ammonia Synthesis From Water and Nitrogen Using Lanthanum-Doped Strontium Titanate/Gadolinium And Calcium Co-Doped Ceria Composite-Based Electrocatalyst. Biointerface Res Appl Chem, 13 (2023) 402.

DOI: 10.33263/briac135.402

Google Scholar

[28] H. Jeoung, J.N. Kim, C.-Y. Yoo, J.H. Joo, J.H. Yu, K.C. Song, M. Sharma and H.C. Yoon, Electrochemical synthesis of ammonia from water and nitrogen using a Pt/GDC/Pt cell. Korean Chem Eng Res, 52 (2014) 58-62.

DOI: 10.9713/kcer.2014.52.1.58

Google Scholar

[29] I.A. Amar, C.T.G. Petit, G. Mann, R. Lan, P.J. Skabara and S. Tao, Electrochemical synthesis of ammonia N₂ and H₂O based on (Li,Na,K)₂CO₃–Ce₀.₈Gd₀.₁₈Ca₀.₀₂O₂–δ composite electrolyte and CoFe₂O₄ cathode. Int. J. Hydrogen Energy, 39 (2014) 4322-4330.

DOI: 10.1016/j.ijhydene.2013.12.177

Google Scholar

[30] R. Li, X. Liu, G. He, P. Hu, Q. Zhen, J.L. Liu and S. Bashir, Green catalytic synthesis of ammonia using solid oxide electrolysis cells composed of multicomponent materials. Catal. Today, 374 (2021) 102-116.

DOI: 10.1016/j.cattod.2021.03.029

Google Scholar

[31] R. Li, T. Li, X. Liu, C. Xie, Q. Zhen, S. Bashir and J.L. Liu, Green synthesis of ammonia from steam and air using solid oxide electrolysis cells composed of ruthenium-modified perovskite catalyst.  Energy Sci Eng, 11 (2023) 2293-2301.

DOI: 10.1002/ese3.1452

Google Scholar

[32] K.Sun, Z. Li, Y. Cao, F. Wang, M.A. Qyyum and N. Han, Recent advancements in perovskite electrocatalysts for clean energy-related applications: Hydrogen production, oxygen electrocatalysis, and nitrogen reduction. Int. J. Hydrogen Energy, 52 (2024) 1104-1126.

DOI: 10.1016/j.ijhydene.2023.07.009

Google Scholar

[33] A. Salehabadi, J. Perry, J. Zanganeh and B. Moghtaderi, Emerging perovskite-based catalysts for sustainable and green ammonia production: A promising hydrogen energy carrier. Int. J. Hydrogen Energy, 106 (2025) 243-260.

DOI: 10.1016/j.ijhydene.2025.01.283

Google Scholar

[34] A.A. Bayode, O.T. Ore, E.A. Nnamani, B. Sotunde, D.T. Koko, E.I. Unuabonah, B. Helmreich and M.O. Omorogie, Perovskite Oxides: Syntheses and Perspectives on Their Application for Nitrate Reduction. ACS Omega, 9 (2024) 19770-19785.

DOI: 10.1021/acsomega.4c01487

Google Scholar

[35] P. Muhammad, A. Zada, J. Rashid, S. Hanif, Y. Gao, C. Li, Y. Li, K. Fan and Y. Wang, Defect Engineering in Nanocatalysts: From Design and Synthesis to Applications. Adv. Funct. Mater., 34 (2024) 2314686.

DOI: 10.1002/adfm.202314686

Google Scholar

[36] H. Yoon, J. Zou, N.M. Sammes and J. Chung, Ru-doped lanthanum strontium titanates for the anode of solid oxide fuel cells. Int. J. Hydrogen Energy, 40 (2015) 10985-10993.

DOI: 10.1016/j.ijhydene.2015.05.193

Google Scholar

[37] X. Zhou, N. Yan, K.T. Chuang and J. Luo, Progress in La-doped SrTiO3 (LST)-based anode materials for solid oxide fuel cells. RSC Advances, 4 (2014) 118-131.

DOI: 10.1039/c3ra42666a

Google Scholar

[38] W. Cai, D. Cao, M. Zhou, X. Yan, Y. Li, Z. Wu, S. Lü, C. Mao, Y. Xie, C. Zhao, J. Yu, M. Ni, J. Liu and H. Wang, Sulfur-tolerant Fe-doped La₀.₃Sr₀.₇TiO₃ perovskite as anode of direct carbon solid oxide fuel cells. Energy, 211 (2020) 118958.

DOI: 10.1016/j.energy.2020.118958

Google Scholar

[39] S. Li, Y. Li, Y. Gan, K. Xie and G. Meng, Electrolysis of H₂O and CO₂ in an oxygen-ion conducting solid oxide electrolyzer with a La₀.₂Sr₀.₈TiO₃+δ composite cathode. J. Power Sources, 218 (2012) 244-249.

DOI: 10.1016/j.jpowsour.2012.06.046

Google Scholar

[40] I.A. Amar, R. Lan, J. Humphreys and S. Tao, Electrochemical synthesis of ammonia from wet nitrogen via a dual-chamber reactor using La₀.₆Sr₀.₄Co₀.₂Fe₀.₈O₃–δ–Ce₀.₈Gd₀.₁₈Ca₀.₀₂O₂–δ composite cathode. Catal. Today, 286 (2017) 51-56.

DOI: 10.1016/j.cattod.2016.09.006

Google Scholar

[41] T. Sakai, S. Matsushita, H. Matsumoto, S. Okada, S. Hashimoto and T. Ishihara, Intermediate temperature steam electrolysis using strontium zirconate-based protonic conductors. Int. J. Hydrogen Energy, 34 (2009) 56-63.

DOI: 10.1016/j.ijhydene.2008.10.011

Google Scholar

[42] C. Orozco, A. Melendez, S. Manadhar, S.R. Singamaneni, K.M. Reddy, K. Gandha, I.C. Niebedim and C.V. Ramana, Effect of Molybdenum Incorporation on the Structure and Magnetic Properties of Cobalt Ferrite. J Phys Chem C, 121 (2017) 25463-25471.

DOI: 10.1021/acs.jpcc.7b08162

Google Scholar

[43] H. Kim, Y.S. Chung, T. Kim, H. Yoon, J.G. Sung, H.K. Jung, W.B. Kim, L.B. Sammes and J.S. Chung, Ru-doped barium strontium titanates of the cathode for the electrochemical synthesis of ammonia. Solid State Ionics, 339 (2019) 115010.

DOI: 10.1016/j.ssi.2019.115010

Google Scholar

[44] L.Qiao, G. Duan, S. Zhang, Y. Ren, Y. Sun, Y. Tang, P. Wan, R. Pang, Y. Chen, A.G. Russell and M. Fan, Electrochemical ammonia synthesis catalyzed with a CoFe layered double hydroxide – A new initiative in clean fuel synthesis. J Clean Prod, 250 (2020) 119525.

DOI: 10.1016/j.jclepro.2019.119525

Google Scholar

[45] L.F. da Silva, W. Avansi, M.L. Moreira, A. Mesquita, L.J.Q. Maia, J. Andrés, E. Longo and V.R. Mastelaro, Relationship between Crystal Shape, Photoluminescence, and Local Structure in SrTiO₃ Synthesized by Microwave-Assisted Hydrothermal Method. J Nanomater, 2012 (2012) 890397.

DOI: 10.1155/2012/890397

Google Scholar

[46] R. Lan and S. Tao, Electrochemical synthesis of ammonia directly from air and water using a Li⁺/H⁺/NH₄⁺ mixed conducting electrolyte. RSC Advances, 3 (2013) 18016-18021.

DOI: 10.1039/c3ra43432j

Google Scholar

[47] S. Biswas, G. Kaur, S. Vafakhah, S. Giddey, J.H. Kim, H.C. Yoon and K. Lee, Investigation of the electrochemical performance of barium-based catalysts for intermediate temperature ammonia synthesis using zinc oxide doped proton conducting electrolyte. Electrochim. Acta, 516 (2025) 145569.

DOI: 10.1016/j.electacta.2024.145569

Google Scholar

[48] I.A. Amar, R. Lan and S. Tao, Synthesis of ammonia directly from wet nitrogen using a redox stable La₀.₇₅Sr₀.₂₅Cr₀.₅Fe₀.₅O₃–δ–Ce₀.₈Gd₀.₁₈Ca₀.₀₂O₂–δ composite cathode. RSC Advances, 5 (2015) 38977-38983.

DOI: 10.1039/c5ra00600g

Google Scholar