The Effect of Annealing on Structural, Optical, and Electrical Properties of Cu3SnS4 Thin Films Prepared by Spin Coat Method

Article Preview

Abstract:

Cu3SnS4 films were grown on glass substrates via method of spin coating, followed by annealing at 550 °C in a furnace under H₂S:Ar (1:9) sulfur rates of 30 and 40 sccm for 15, 30, and 60 minutes. The effect of the sulfur rate and annealing time on the structural, morphological, and optical behaviors of the samples was systematically investigated using X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), photoluminescence (PL), Hall effect, and UV-Vis spectroscopy. The XRD patterns revealed that all the Cu3SnS4 samples had a polycrystalline structure. The crystallite size, dislocation density, interplaner distance, micro-strain, and crystallite number of the Cu3SnS4 samples were calculated from the XRD spectra. Among all the samples, the CTS sample annealed for 15 minutes under a 30 sccm H₂S:Ar (1:9) gas flow showed the best crystalline structure. The surface morphology of the samples showed spherical micro-crystal formations. Analysis of the Cu3SnS4 samples indicated that the surfaces were composed of valley and peak regions. The valley regions appeared relatively smooth, while the peak regions displayed a crystal structure with specific orientations. When examining the energy band gap values, it is observed that the energy band gap of the films increases significantly with the increase in sulfur flow rate. PL analysis revealed emission peaks at approximately 1.41 eV and 1.80 eV, along with broad emission bands at 549 nm, 567 nm, 689.42 nm, and 882.6 nm. An increase in sulfur content led to a reduction in peak intensity, which is attributed to conduction band fluctuations and the formation of structural defects. The carrier concentration of the samples is found to be on the order of 1017 cm−3 and 1018 cm−3, which is more appropriate for thin-film solar cells (TFCSs).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

31-46

Citation:

Online since:

December 2025

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.A. Green, Solar cell efficiency tables, Prog. Photovoltaic Res. Applic. 8 (2000).

Google Scholar

[2] A. Paul, A. Singha, K. Hossain, S. Gupta, M. Misra, S. Mallick, A.H. Munshi, D. Kabra, 4-T CdTe/Perovskite Thin Film Tandem Solar Cells with Efficiency> 24%, ACS Energy Letters 9 (2024) 3019-3026.

DOI: 10.1021/acsenergylett.4c01118

Google Scholar

[3] J. Nishinaga, Y. Kamikawa, T. Sugaya, S. Ishizuka, Comparison of polycrystalline and epitaxial Cu (In, Ga) Se2 solar cells with conversion efficiencies of more than 21%, Solar Energy Materials and Solar Cells 269 (2024) 112791.

DOI: 10.1016/j.solmat.2024.112791

Google Scholar

[4] T. Chargui, F. Lmai, M. Al-Hattab, K. Rahmani, Improving CZTS/ZTO solar cell efficiency with inorganic BSF layers, Semiconductor Science and Technology 39(8) (2024) 085012.

DOI: 10.1088/1361-6641/ad6477

Google Scholar

[5] T. Enkhbat, N. Otgontamir, J. Kim, Impact of Chemical Source Selection on Aqueous Spray-Deposited CZTSSe Solar Cells, ACS Applied Energy Materials 7(5) (2024) 1748-1755.

DOI: 10.1021/acsaem.3c02702

Google Scholar

[6] R. Paul, S. Shukla, T.R. Lenka, F.A. Talukdar, V. Goyal, N.E.I. Boukortt, P.S. Menon, Recent progress in CZTS (CuZnSn sulfide) thin-film solar cells: a review, Journal of Materials Science: Materials in Electronics 35(3) (2024) 226.

DOI: 10.1007/s10854-024-11983-0

Google Scholar

[7] Z. Hussain, N. Padha, A. Banotra, Development of nanostructured Cu3SnS4 thin films through annealing of the stack of precursors for photonic applications, Optical and Quantum Electronics 56(12) (2024) 1976.

DOI: 10.1007/s11082-024-07709-5

Google Scholar

[8] W. Wei, H. Sun, X. Dong, Q. Lu, F. Yang, Y. Zhao, J. Chen, X. Zhang, Y. Li, A neotype self-rectifying Cu3SnS4-MoO3 synaptic memristor for neuromorphic applications, Chemical Engineering Journal 482 (2024) 148848.

DOI: 10.1016/j.cej.2024.148848

Google Scholar

[9] M.R. Pallavolu, V.R.M. Reddy, B. Pejjai, D.-s. Jeong, C. Park, Effect of sulfurization temperature on the phase purity of Cu2SnS3 thin films deposited via high vacuum sulfurization, Applied Surface Science 462 (2018) 641-648.

DOI: 10.1016/j.apsusc.2018.08.112

Google Scholar

[10] M.K. Gadha, T. Anitha, P. Punathil, T. Vimalkumar, Annealing temperature optimization for dip-coated Cu2SnS3 thin films: Sustainable pathway to CTS/Zn (O, S) solar cells via numerical simulation, Materials Science and Engineering: B 314 (2025) 118003.

DOI: 10.1016/j.mseb.2025.118003

Google Scholar

[11] J. Wan, L. Li, C. Lin, Y. Wu, Z. Cheng, Z. Luo, Y. Lin, S. Yang, M. Luo, Harnessing Halogen‐Induced Anharmonic Effect to Achieve Low Lattice Thermal Conductivity in High‐Symmetry Cu2SnS3 for High‐Performance Thermoelectric Applications, Advanced Functional Materials (2025) 2501535.

DOI: 10.1002/adfm.202501535

Google Scholar

[12] A. Paul, B. Krishnan, S. Shaji, D.A. Avellaneda, Cu2SnS3 based photovoltaic structure with improved open circuit voltage for air stable self-driven enhanced NIR photodetection, Applied Surface Science 639 (2023) 158181.

DOI: 10.1016/j.apsusc.2023.158181

Google Scholar

[13] H. Maeta, K. Nakashima, A. Kanai, K. Tanaka, Deposition of single-phase monoclinic Cu2SnS3 thin films on Mo-coated substrates by dual-source fine-channel mist CVD, Japanese Journal of Applied Physics 64(1) (2025) 015502.

DOI: 10.35848/1347-4065/ada709

Google Scholar

[14] A. Lokhande, V. Karade, V. Lokhande, C. Lokhande, J.H. Kim, Chemical Processing of Cu2SnS3 Nanoparticles for Solar Cells, Chemically Deposited Metal Chalcogenide-based Carbon Composites for Versatile Applications, Springer2023, pp.271-295.

DOI: 10.1007/978-3-031-23401-9_10

Google Scholar

[15] A. Kanai, S. Saito, H. Araki, K. Tanaka, Influence of thiourea concentration during deposition of a CdS buffer layer on the electric properties of Cu2SnS3 solar cells, Journal of Physics D: Applied Physics 57(2) (2023) 025502.

DOI: 10.1088/1361-6463/ad00c7

Google Scholar

[16] Y. Igarashi, R. Ohashi, A. Kanai, K. Tanaka, Influence of sulfurization process in tin sulfide and sulfur mixed vapors on the morphology of Cu2SnS3 thin films, Journal of Physics D: Applied Physics 58(1) (2024) 015309.

DOI: 10.1088/1361-6463/ad8005

Google Scholar

[17] K. Tanaka, K. Okamura, R. Saito, H. Maeta, A. Kanai, Effect of cover annealing on Cu2SnS3 thin films deposited by dual-source fine-channel mist chemical vapor deposition, Journal of Materials Science: Materials in Electronics 34(25) (2023) 1742.

DOI: 10.1007/s10854-023-11155-6

Google Scholar

[18] E. Laghchim, A. Raidou, J. Zimou, J. Mhalla, A. El-Habib, K. Fareh, A. Fahmi, K. Nouneh, M.h. Taibi, M. Fahoume, Investigating the impact of copper precursors on the photovoltaic performance of Cu2SnS3 thin film-based solar cells toward an enhanced power conversion efficiency of 9.85%, Solar Energy 290 (2025) 113341.

DOI: 10.1016/j.solener.2025.113341

Google Scholar

[19] F. Welatta, A. El Kissani, A. Mellalou, A. Narjis, D.A. El Haj, A. Tchenka, L. Nkhaili, M. Aggour, A. Outzourhit, Tuning thermoelectric properties of spin-coated Cu2SnS3 thin films by annealing, Journal of Electronic Materials 52(8) (2023) 5396-5400.

DOI: 10.1007/s11664-023-10424-8

Google Scholar

[20] M. Navaneethan, Enhancing the Thermoelectric Performance of In-Doped Cu2sns3 Disordered Material Based Solvothermal Through Coordination of the Transport Properties.

DOI: 10.2139/ssrn.4490105

Google Scholar

[21] A. Lokhande, R. Chalapathy, M. He, E. Jo, M. Gang, S. Pawar, C. Lokhande, J.H. Kim, Development of Cu2SnS3 (CTS) thin film solar cells by physical techniques: A status review, Solar Energy Materials and Solar Cells 153 (2016) 84-107.

DOI: 10.1016/j.solmat.2016.04.003

Google Scholar

[22] C. Lokhande, A. Ubale, P. Patil, Thickness dependent properties of chemically deposited Bi2S3 thin films, Thin Solid Films 302(1-2) (1997) 1-4.

DOI: 10.1016/s0040-6090(96)09540-5

Google Scholar

[23] R. Zhang, R. Liu, Z. Ding, J. Ma, T. Wang, D. Zhang, J. Liu, P. Cai, X. Pu, Photothermal-assisted S-scheme heterojunction of Cu3SnS4/Mn0. 3Cd0. 7S for enhanced photocatalytic hydrogen production, Journal of Colloid and Interface Science 682 (2025) 568-577.

DOI: 10.1016/j.jcis.2024.11.245

Google Scholar

[24] Y. Jin, H. Yoo, H. Seong, J.H. Moon, G. Kim, T. Jung, Y. Myung, W. Lee, S. Kim, J. Choi, Cubic Cu3SnS4@ CNT for stable and high-temperature sodium-ion batteries: Simple colloidal synthesis and enhanced cycle performance, Chemical Engineering Journal 503 (2025) 158461.

DOI: 10.1016/j.cej.2024.158461

Google Scholar

[25] T. Tasaki, K. Jimbo, D. Motai, M. Takahashi, H. Araki, Fabrication of Cu2Sn1-xGexS3 Thin-Film Solar Cells via Sulfurization of Cu2GeS3/Cu2SnS3 Stacked Precursors, Materials 17(8) (2024) 1886.

DOI: 10.3390/ma17081886

Google Scholar

[26] K. Tanaka, S. Miyagi, D. Motai, R. Ohashi, Y. Hosokawa, K. Jimbo, Y. Akaki, H. Araki, Dependence of photoluminescence on sulfurization temperature of Cu2SnS3 thin films, Applied Physics A 129(5) (2023) 360.

DOI: 10.1007/s00339-023-06641-x

Google Scholar

[27] A. Paul, Synthesis and characterization of Cu-Sn-S thin films for photovoltaic and photodetection applications, Universidad Autónoma de Nuevo León, 2023.

Google Scholar

[28] P. Fernandes, P. Salomé, A. Da Cunha, A study of ternary Cu2SnS3 and Cu3SnS4 thin films prepared by sulfurizing stacked metal precursors, Journal of Physics D: Applied Physics 43(21) (2010) 215403.

DOI: 10.1088/0022-3727/43/21/215403

Google Scholar

[29] M. Sreejith, D. Deepu, C.S. Kartha, K. Rajeevkumar, K. Vijayakumar, Tuning the properties of sprayed CuZnS films for fabrication of solar cell, Applied physics letters 105(20) (2014).

DOI: 10.1063/1.4902224

Google Scholar

[30] U. Chalapathi, Y.K. Kumar, S. Uthanna, V.S. Raja, Investigations on Cu3SnS4 thin films prepared by spray pyrolysis, Thin Solid Films 556 (2014) 61-67.

DOI: 10.1016/j.tsf.2014.01.005

Google Scholar

[31] V.R.M. Reddy, M.R. Pallavolu, P.R. Guddeti, S. Gedi, K.K.Y.B. Reddy, B. Pejjai, W.K. Kim, T.R.R. Kotte, C. Park, Review on Cu2SnS3, Cu3SnS4, and Cu4SnS4 thin films and their photovoltaic performance, Journal of Industrial and Engineering Chemistry 76 (2019) 39-74.

DOI: 10.1016/j.jiec.2019.03.035

Google Scholar

[32] B. John, G.G. Silvena, K.V. Kumar, Surfactant free and temperature dependent phase formation of ternary Cu3SnS4 nanoparticles by solvothermal process, Materials Today: Proceedings 62 (2022) 5071-5074.

DOI: 10.1016/j.matpr.2022.02.409

Google Scholar

[33] V.R. Minnam Reddy, M.R. Pallavolu, P.R. Guddeti, S. Gedi, K.K. Yarragudi Bathal Reddy, B. Pejjai, W.K. Kim, T.R.R. Kotte, C. Park, Review on Cu2SnS3, Cu3SnS4, and Cu4SnS4 thin films and their photovoltaic performance, Journal of Industrial and Engineering Chemistry 76 (2019) 39-74.

DOI: 10.1016/j.jiec.2019.03.035

Google Scholar

[34] B. Sarfraz, M.T. Mehran, F. Shahzad, S. Hussain, S.R. Naqvi, H.A. Khan, K. Mahmood, Bifunctional CuS/Cl-terminated greener MXene electrocatalyst for efficient hydrogen production by water splitting, RSC advances 13(32) (2023) 22017-22028.

DOI: 10.1039/d3ra02581k

Google Scholar

[35] A. Beheshti-Marnani, T. Rohani, M.A. Kermani, S.z. Mohammadi, A sensitive chalcogenide-based electrochemical sensor for ultra-level detection of Mospilan residues in real samples, Scientific Reports 15(1) (2025) 5966.

DOI: 10.1038/s41598-025-89256-x

Google Scholar

[36] A. Kassim, S. Nagalingam, H.S. Min, N. Karrim, XRD and AFM studies of ZnS thin films produced by electrodeposition method, Arabian Journal of Chemistry 3(4) (2010) 243-249.

DOI: 10.1016/j.arabjc.2010.05.002

Google Scholar

[37] A. Patterson, The Scherrer formula for X-ray particle size determination, Physical review 56(10) (1939) 978.

DOI: 10.1103/physrev.56.978

Google Scholar

[38] D. Avellaneda, A. Paul, S. Shaji, B. Krishnan, Synthesis of Cu2SnS3, Cu3SnS4, and Cu4SnS4 thin films by sulfurization of SnS-Cu layers at a selected temperature and /or Cu layers thickness, Journal of Solid State Chemistry 306 (2022) 122711.

DOI: 10.1016/j.jssc.2021.122711

Google Scholar

[39] V.M. Dzhagan, A.P. Litvinchuk, M. Kruszynska, J. Kolny-Olesiak, M.Y. Valakh, D.R. Zahn, Raman scattering study of Cu3SnS4 colloidal nanocrystals, The Journal of Physical Chemistry C 118(47) (2014) 27554-27558.

DOI: 10.1021/jp509035f

Google Scholar

[40] E. Laghchim, A. Raidou, J. Zimou, A. Yousfi, J. Mhalla, A. El-Habib, A. Fahmi, K. Nouneh, M. Rouchdi, A. Belfhaili, Experimental and simulation study for an improved efficiency of 8.46% of a CTS thin-film solar cell: impact of tin (Sn) concentration on structural, optoelectronic properties and photovoltaic performance, Optical and Quantum Electronics 57(1) (2024) 76.

DOI: 10.1007/s11082-024-07951-x

Google Scholar

[41] W. Gu, B. Liu, S. Li, B. Hu, J. Xu, J. Wang, B. Du, Phase evolution and thermoelectric performance of Cu2SnS3, Journal of Materials Science: Materials in Electronics 34(13) (2023) 1096.

DOI: 10.1007/s10854-023-10530-7

Google Scholar

[42] J.M.R. Tan, Y.H. Lee, S. Pedireddy, T. Baikie, X.Y. Ling, L.H. Wong, Understanding the synthetic pathway of a single-phase quarternary semiconductor using surface-enhanced Raman scattering: a case of wurtzite Cu2ZnSnS4 nanoparticles, Journal of the American Chemical Society 136(18) (2014) 6684-6692.

DOI: 10.1021/ja501786s

Google Scholar

[43] A.I. Inamdar, A.S. Salunke, B. Hou, N.K. Shrestha, H. Im, ORCA–Online Research@ Cardiff.

Google Scholar

[44] Y.-A. Shen, Bi dispersion hardening in Sn-Bi alloys by solid-state aging, JOM 75(11) (2023) 4922-4930.

DOI: 10.1007/s11837-023-06079-9

Google Scholar

[45] H. Tominaga, J. Tokomoto, K. Onimura, K. Yamabuki, Synthesis of High-Sulfur-Content Resins via Inverse Vulcanization Using Dithiols and Their Application as Cathode Materials for Lithium–Sulfur Rechargeable Batteries, Electrochem 6(1) (2025) 8.

DOI: 10.3390/electrochem6010008

Google Scholar

[46] H.Dahman, S.Rabaoui, A.Alyamani, L. El Mir, Structural, morphological and optical properties of Cu2SnS3 thin film synthesized by spin coating technique, Vacuum 101 (2014) 208-211.

DOI: 10.1016/j.vacuum.2013.08.019

Google Scholar

[47] S. Thiruvenkadam, P. Sakthi, S. Prabhakaran, S. Chakravarty, V. Ganesan, A.L. Rajesh, Deposition and characterization of spray pyrolysed p-type Cu2SnS3 thin film for potential absorber layer of solar cell, Physica B: Condensed Matter 538 (2018) 8-12.

DOI: 10.1016/j.physb.2018.03.007

Google Scholar

[48] A. Manimozhi, T. Sumathi, S. Saravanan, N. Dhachanamoorthi, M. Saravanakumar, K. Jayaprakash, Dual purpose of graphene decorated with Cu3SnS4 as a counter electrode for dye sensitized solar cells and degradation of tetracycline antibiotics, Chemical Physics Impact 10 (2025) 100779.

DOI: 10.1016/j.chphi.2024.100779

Google Scholar

[49] A. Astam, C. Çetin, Tavlama İşleminin SILAR Tekniğiyle Elde Edilen Cu3SnS4 İnce Filmlerin Yapısal ve Optik Özellikleri Üzerine Etkisi, Journal of the Institute of Science and Technology 14(1) (2024) 199-208.

DOI: 10.21597/jist.1364232

Google Scholar

[50] K. Kiselman, Photoluminescence Characterisation of Thin Film Solar Cells, Uppsala universitet, 2024.

Google Scholar

[51] P. Dolma, N. Padha, A. Banotra, R. Niranjan, Z. Hussain, Effect of change in substrate temperature, layer thickness on the behaviour of n-CdS thin films and formation of their diodes and photovoltaic cell, Thin Solid Films 802 (2024) 140459.

DOI: 10.1016/j.tsf.2024.140459

Google Scholar

[52] S.A. Humphry-Baker, T.A. Mellan, M. Finnis, P. Polcik, W.E. Lee, M. Reece, S. Grasso, Thermal conductivity of WC: Microstructural design driven by first-principles simulations, Acta Materialia 283 (2025) 120517.

DOI: 10.1016/j.actamat.2024.120517

Google Scholar

[53] J. Kim, Y. Xu, D. Bain, M. Li, M. Cotlet, Q. Yu, A.J. Musser, Small to Large Polaron Behavior Induced by Controlled Interactions in Perovskite Quantum Dot Solids, ACS nano 17(22) (2023) 23079-23093.

DOI: 10.1021/acsnano.3c08748

Google Scholar

[54] L.A. Saleh, Z.T. Khodair, A.M. Mohammad, T.H. Mubarak, A.A. Khadom, Investigation of the Structural and Optical Properties of Cu 2 SnS 3 Nanostructures Thin Films for Solar Cell Application, (2023).

DOI: 10.21203/rs.3.rs-3040611/v1

Google Scholar

[55] J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium, physica status solidi (b) 15(2) (1966) 627-637.

DOI: 10.1002/pssb.19660150224

Google Scholar

[56] B.D. Long, L.T. Bang, T.B. Trung, P.T.T. Anh, P.B. Thang, The Synthesis and Investigation of Thermoelectric Properties of Cu4SnS4 at Elevated Temperatures, Journal of Materials Engineering and Performance (2024) 1-8.

DOI: 10.1007/s11665-024-09519-y

Google Scholar

[57] S. Goumri-Said, A. Alshoaibi, S. Azam, R. Khenata, B.U. Haq, M.F. Rahman, M.B. Kanoun, Unraveling essential optoelectronic and thermoelectric excellence in CsZrCuSe3 with hybrid functional and Boltzmann transport insights, Results in Physics 57 (2024) 107395.

DOI: 10.1016/j.rinp.2024.107395

Google Scholar

[58] M. Dong, L.Wei, Y.Zhu, Controllability study of copper‐tin‐sulphide (Cu3SnS4) material based on the ratio adjustment of Cu to Sn elements, Micro & Nano Letters 18(9-12) (2023) e12176.

DOI: 10.1049/mna2.12176

Google Scholar

[59] L. Marasamy, A.-D.R. Chettiar, R. Manisekaran, E. Linda, M.F. Rahman, M.K. Hossain, C.E.P. García, J. Santos-Cruz, V. Subramaniam, F. de Moure Flores, Impact of selenization with NaCl treatment on the physical properties and solar cell performance of crack-free Cu (In, Ga) Se 2 microcrystal absorbers, RSC advances 14(7) (2024) 4436-4447.

DOI: 10.1039/d3ra05829h

Google Scholar

[60] S. Vanalakar, G. Agawane, A. Kamble, C. Hong, P. Patil, J. Kim, Fabrication of Cu2SnS3 thin film solar cells using pulsed laser deposition technique, Solar Energy Materials and Solar Cells 138 (2015) 1-8.

DOI: 10.1016/j.solmat.2015.02.031

Google Scholar