Evaluation of Antioxidant Activities of Silver Nanoparticles Synthesized by Aqueous Extract of Maclura pomifera (Raf.) Schneid. Fruit

Article Preview

Abstract:

Plant-based nanoparticles (NPs) synthesis has gained increasing attention due to its cost-effectiveness, rapidity, and environmental friendliness. In this study, the green synthesis of silver nanoparticles (MP-AgNPs) using Maclura pomifera fruit extract and their antioxidant activities were investigated. The synthesized MP-AgNPs were characterized by Ultraviolet-Visible (UV-Vis) spectroscopy, Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Spectroscopy (EDX), Fourier Transform Infrared (FTIR) spectroscopy, and X-ray Diffraction (XRD) analysis. According to the EDX results, the elemental composition by mass was 22.72% carbon, 13.89% oxygen, and 57.74% silver. SEM analysis revealed that the MP-AgNPs were predominantly spherical, with an average particle size of 39.02 nm. The zeta potential of MP-AgNPs was measured as –34.6 mV, indicating good nanoparticle stability and electrostatic repulsion among particles. In antioxidant assays, the ABTS radical scavenging activity showed IC50 values of 6.36 ± 0.02 µg/mL for MP-AgNPs, 7.27 ± 0.00 µg/mL for BHT, and 10.58 ± 0.01 µg/mL for the extract. Furthermore, FRAP assay results demonstrated increased antioxidant activity in the order of extract (3.55 ± 0.00 µmol TE/mg), BHT (5.33 ± 0.01 µmol TE/mg), and MP-AgNPs (5.39 ± 0.02 µmol TE/mg).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

123-133

Citation:

Online since:

December 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H.P. Gajera, D.G. Hirpara, R.V. Bhadani, B.A. Golakiya, Green synthesis and characterization of nanosilver derived from extracellular metabolites of potent Bacillus subtilis for antifungal and eco-friendly action against phytopathogen, Biometals  35 (2022) 479–497.

DOI: 10.1007/s10534-022-00382-9

Google Scholar

[2] S. E.Azam, F. Yasmeen, M. S. Rashid, U. Ahmad, S. Hussain, A. Perveez, M. Sarib, silver nanoparticles loaded active packaging of low-density polyethylene (LDPE), A challenge study against Listeria monocytogenes, Bacillus subtilis and Staphylococcus aurerus to enhance the shelf life of bread, Meat and Cheese, Int. J. Agri. Biosci. 12(3) (2023) 165-171.

DOI: 10.47278/journal.ijab/2023.060

Google Scholar

[3] A. Hannan, X. Du, B. Maqbool, A. Khan, Nanoparticles as potent allies in combating antibiotic resistance: A promising frontier in antimicrobial therapy, Pak. Vet. J. 44(4) (2024) 957-967.

DOI: 10.29261/pakvetj/2024.227

Google Scholar

[4] S.P. Singh, A. Mishra, R.K. Shyanti, R.P. Singh, A. Acharya, Silver Nanoparticles Synthesized Using Carica papaya Leaf Extract (AgNPs-PLE) Causes Cell Cycle Arrest and Apoptosis in Human Prostate (DU145) Cancer Cells, Biol. Trace Elem. Res. 199(4) (2021) 1316-1331.

DOI: 10.1007/s12011-020-02255-z

Google Scholar

[5] D.A. Lomeli-Rosales, A. Zamudio-Ojeda, O.K. Reyes-Maldonado, M.E. Lopez-Reyes, G.C. Basulto-Padilla, E.J. Lopez-Naranjo, V.M. Zuniga-Mayo, G. Velazquez-Juarez, Green Synthesis of Gold and Silver Nanoparticles Using Leaf Extract of Capsicum chinense Plant, Molecules (Basel, Switzerland) 27(5) (2022) 1692 -1712.

DOI: 10.3390/molecules27051692

Google Scholar

[6] Z. Bedlovicova, I. Strapac, M. Balaz, A. Salayova, A Brief Overview on Antioxidant Activity Determination of Silver Nanoparticles, Molecules 25 (2020) 3191-3215.

Google Scholar

[7] D. Ozturk, A. Ozguven, V. Yonten, M. Ertas, Green synthesis, characterization and antimicrobial activity of silver nanoparticles using Ornithogalum narbonense L., Inorg. Nano-Met Chem. 52(3) (2022) 329-341.

Google Scholar

[8] E.Y. Ahn, Y. Park, Anticancer prospects of silver nanoparticles green-synthesized by plant extracts, Mater. Sci. Eng. C. 116 (2020) 111253.

DOI: 10.1016/j.msec.2020.111253

Google Scholar

[9] M.M Rumpa, C. Maier, TRPV1-Dependent Antiproliferative Activity of Dioecious Maclura pomifera Extracts in Estrogen Receptor-Positive Breast Cancer Cell Lines Involves Multiple Apoptotic Pathways, Int. J. Mol. Sci. 25 (2024)  5258.

DOI: 10.3390/ijms25105258

Google Scholar

[10] I. Gajić, A. Dinić, L. Stanojević, J. Zvezdanović, V. Nikolić, M. Urošević, L. Nikolic, V. Savić, Osage orange (Maclura pomifera (Raf.) Schneid) fruit extracts: UHPLC-DAD-ESI-MS/MS analysis, antioxidant activity and in vivo skin tests. Nat. Prod. Res. 38(17) (2023) 3080–3085.

DOI: 10.1080/14786419.2023.2208361

Google Scholar

[11] N.A. Coman, M. Babotă, I. Nădășan, S. Dinică, R. Ștefănescu, O. Frumuzachi, A. Man, A. Mocan, C. Tanase, Comparative study on the chemical composition and biological activity of polyphenolic extracts obtained from Maclura pomifera (Raf.) C.K. Schneid bark and periderm. BioResources 18(4) (2023) 8104-8119.

DOI: 10.15376/biores.18.4.8104-8119

Google Scholar

[12] M. Alhilal, H.S. Erol, S. Yildirim, A. Cakir, M. Koc, D. Celebi, M.B. Halici, Osajin from Maclura pomifera alleviates sepsis-induced liver injury in rats: biochemical, histopathological and immunohistochemical estimation. J. Taibah Univ. Sci. 17(1) (2023) 2201250

DOI: 10.1080/16583655.2023.2201250

Google Scholar

[13] C. Bailly, Pharmacological properties of extracts and prenylated isoflavonoids from the fruits of Osage orange (Maclura pomifera (Raf.) C.K. Schneid.). Fitoterapia 177 (2024) 106112.

DOI: 10.1016/j.fitote.2024.106112

Google Scholar

[14] M. Rumpa, C. Maier, TRPV1-dependent antiproliferative activity of dioecious Maclura pomifera Extracts in estrogen receptor-positive breast cancer cell lines involves multiple apoptotic pathways. Int. J. Mol. Sci. (25) (2024) 5258.

DOI: 10.3390/ijms25105258

Google Scholar

[15] A.S. Dadayan, L.A. Stepanyan, T.H. Sargsyan, A.M. Hovhannisyan, S.A. Dadayan, Quantitative analysis of biologically active substances and the investigation of antioxidant and antimicrobial activities of some extracts of Osage orange fruits. Pharmacia 68(4) (2021) 731–739.

DOI: 10.3897/pharmacia.68.e70180.figure5

Google Scholar

[16] S. Filip, S. Đurović, S. Blagojević, A. Tomić, A. Ranitović, U. Gašić, Ž. Tešić, Z. Zeković, Chemical composition and antimicrobial activity of Osage orange (Maclura pomifera) leaf extracts. Arch Pharm (Weinheim). 354(2) (2021) e2000195.

DOI: 10.1002/ardp.202000195

Google Scholar

[17] M. Alhilal, S. Yıldırım, H.S. Erol, S. Alhilal, M. Kılıçlıoğlu, B. Gözegir, M. Koç, M.B. Halıcı, Osajin is a promising candidate for sepsis-induced brain damage via suppression of the 8-OHdG/Bax/Caspase-3 pathway in a rat model of sepsis. J. Health Sci. Med. 8(2) (2025) 191-196.

DOI: 10.32322/jhsm.1614590

Google Scholar

[18] T.H. Barak, İ. Kurt Celep, T.B. Şentürk, H. Bardakci, E. Celep, In Vitro Anti-Aging Potential Evaluation of Maclura pomifera (Rafin.) Schneider 80% Methanol Extract with Quantitative HPTLC Analysis. Turk J Pharm Sci. 19(4) (2022) 400-407.

DOI: 10.4274/tjps.galenos.2021.65087

Google Scholar

[19] S. Filip, S. Đurović, Maclura fruit as a rich source of triglycerides and triterpenes and valuable material for cosmetic products. Flavour Fragr. J. (2025).

DOI: 10.1002/ffj.3872

Google Scholar

[20] S.J. Lee, A.A. Ahmad, A. Wood, T.J. Mabry, New lupane triterpene fatty acid ester from leaves of Maclura pomifera, Nat. Prod. Lett. 10 (2012) 313-317.

DOI: 10.1080/10575639708043746

Google Scholar

[21] S. Filip, Z. Djarmati, K. Lisichkov, J. Csanadi, R.M. Jankov, Isolation and characterization of Maclura (Maclura pomifera) extracts obtained by supercritical fluid extraction, Ind. Crops Prod. 76 (2015) 995-1000.

DOI: 10.1016/j.indcrop.2015.07.066

Google Scholar

[22] D. Vesela, R. Kubinova, J. Muselik, M. Zemlika, V. Suchy, Antioxidative and EROD activities of osajin and pomiferin, Fitoterapia 75 (2004) 209-211.

DOI: 10.1016/j.fitote.2003.12.005

Google Scholar

[23] S. Filip, S. Durovic, S. Blagojevic, A. Tomic, A. Ranitovic, U. Gasic, Z. Tesic, Z. Zekovic, Chemical composition and antimicrobial activity of Osage orange (Maclura pomifera) leaf extracts, Arch. Pharm. 354(2) (2021) e2000195.

DOI: 10.1002/ardp.202000195

Google Scholar

[24] A. Sahin Yaglioglu, R. Erenler, E.N. Gecer, N. Genc, Biosynthesis of silver nanoparticles using Astragalus flavesces Leaf: identification, antioxidant activity, and catalytic degradation of methylene blue, J. Inorg. Organomet. Polym. 32 (2022) 3700-3707.

DOI: 10.1007/s10904-022-02362-5

Google Scholar

[25] A. Sahin Yaglioglu, F. Eser, M.S. Yaglioglu, I. Demirtas, The antiproliferative and antioxidant activities of the essential oils of Juniperus species from Turkey. Flavour Fragr. J. 35(2020) 511.

DOI: 10.1002/ffj.3586

Google Scholar

[26] A. Guzel, H. Aksit, M. Elmastas, R. Erenler, Bioassay-guided isolation and identification of antioxidant flavonoids from Cyclotrichium origanifolium (Labill.) manden and scheng, Pharmacogn. Mag. 13(50) (2017) 316-320.

DOI: 10.4103/0973-1296.204556

Google Scholar

[27] M. Oyaizu, Studies on products of Browning reaction, The Japanese Journal of Nutrition and Dietetics 44(6) (1986) 307-315.

Google Scholar

[28] H. Basari, M. Yontem, F. Erci, B. Esirgenler, Evaluation of Synthesis Variables on the Antimicrobial and Antioxidant Efficacy of Silver Nanoparticles Produced Using Hibiscus sabdariffa Extract, Lett. Appl. NanoBioScience. 14(2) 2025, 57.

Google Scholar

[29] D. Chugh, V. S. Viswamalya, B. Das, Green synthesis of silver nanoparticles with algae and the importance of cappingagents in the process, J. Genet. Eng. & Biotechnol. (2021) 126.

Google Scholar

[30] C.N.R. Rao, Chemical Applications of Infrared Spectroscopy, Academic Press, New York, and London (1963)

Google Scholar

[31] L.J. Bellamy, Infrared Spectra of Complex Molecules, Chapman Hall, London (1975).

Google Scholar

[32] S. Jain, M.S. Mehata, Medicinal plant leaf extract and pure flavonoid mediated green synthesis of silver nanoparticles and their enhanced antibacterial property, Sci. Rep. 7 (2017) 15867.

DOI: 10.1038/s41598-017-15724-8

Google Scholar

[33] M. Sadeghi-Kiakhani, A.R. Tehrani-Bagha, F.S. Miri, E. Hashemi, M. Safi, Application of Achillea millefolium extract as a reducing agent for synthesis of silver nanoparticles (AgNPs) on the cotton: antibacterial, antioxidant and dyeing studies, Biometals 35 (2022) 313-327.

DOI: 10.1007/s10534-022-00366-9

Google Scholar

[34] Z. Su, P. Wang, W. Yuan, G. Grant, S. Li, Phenolics from the fruits of Maclura pomifera. Nat. Prod. Commun. 12(11) (2017)1743-1745.

DOI: 10.1177/1934578x1701201122

Google Scholar

[35] D.M. Teixeira, V.C. Canelas, A.M. Canto, J.M.G. Teixeira, C.B. Dias, HPLC-DAD Quantification of Phenolic Compounds Contributing to the Antioxidant Activity of Maclura pomifera, Ficus carica and Ficus elastica Extracts, Anal. Lett. 42 (2009) 2986-3003.

DOI: 10.1080/00032710903276646

Google Scholar

[36] I. Polbuppha, V. Suthiphasilp, T. Maneerat, R. Charoensup, T. Limtharakul, S. Cheenpracha, S.G. Pyne, S. Laphookhie, Macluracochinones A-E, antimicrobial flavonoids from Maclura cochinchinensis (Lour.) Corner, Phytochemistry 187 (2021) 112773.

DOI: 10.1016/j.phytochem.2021.112773

Google Scholar

[37] W. Lakornwong, K. Kanokmedhakul, J. Masranoi, S. Tontapha, J. Yahuafai, S. Laphookhieo, V. Suthiphasilp, S. Kanokmedhakul, Cytotoxic and antibacterial xanthones from the roots of Maclura cochinchinensis, Nat. Prod. Res. 36(23) (2022) 6021-6030.

DOI: 10.1080/14786419.2022.2062351

Google Scholar

[38] Y.H. Jo, S. Lee, S.W. Yeon, S.H. Ryu, A. Turk, B.Y. Hwang, Y.K. Han, K.Y. Lee, M.K. Lee, Anti-α-glucosidase and anti-oxidative isoflavonoids from the immature fruits of Maclura tricuspidata, Phytochemistry 194 (2022) 113016.

DOI: 10.1016/j.phytochem.2021.113016

Google Scholar

[39] A. Camargo, A.P. Dalmagro, A.M. Rebelo, C.K. Reinke, A.L.B. Zeni, Phenolic profile, antidepressant-like and neuroprotective effects of Maclura tinctoria leaves extract, Nat. Prod. Res. 36(18) (2022) 4686-4689.

DOI: 10.1080/14786419.2021.2000407

Google Scholar

[40] S. Hong, J. Kwon, N.T. Hiep, S.J. Sim, N. Kim, K.H. Kim, D. Lee, W. Mar, The isoflavones and extracts from Maclura tricuspidata fruit protect against neuronal cell death in ischemic injury via induction of Nox4-targeting miRNA-25, miRNA-92a, and miRNA-146a, J. Funct. Foods 40 (2018) 785-797.

DOI: 10.1016/j.jff.2017.12.011

Google Scholar

[41] S.Y. Park, B. Kim, Z. Cui, G. Park, Y.W. Choi, Anti-metastatic effect of gold nanoparticle-conjugated Maclura tricuspidata Extract on human hepatocellular carcinoma cells, Int. J. Nanomedicine 15 (2020) 5317-5331.

DOI: 10.2147/ijn.s246724

Google Scholar

[42] O. Azizian-Shermeh, A. Einali, A. Ghasemi, Rapid biologically one-step synthesis of stable bioactive silver nanoparticles using Osage orange (Maclura pomifera) leaf extract and their antimicrobial activities, Adv. Powder. Technol. 28(12) (2017) 3164-3171.

DOI: 10.1016/j.apt.2017.10.001

Google Scholar

[43] F. Eker, E. Akdasçi, H. Duman, M. Bechelany, S. Karav, Green Synthesis of Silver Nanoparticles Using Plant Extracts:A Comprehensive Review of Physicochemical Properties and Multifunctional Applications, Int. J. Mol. Sci. 26 (2025) 6222.

DOI: 10.3390/ijms26136222

Google Scholar

[44] D.T. Savage, J. Z. Hilt, T D. Dziubla, In Vitro Methods for Assessing Nanoparticle Toxicity, Methods Mol Biol. 1894 2019 1–29.

DOI: 10.1007/978-1-4939-8916-4_1

Google Scholar