Electrodeposition of SnO2/MnO2 Nanocomposite Films on Ultrathin Stainless Steel Foils for High-Performance Supercapacitor Electrodes

Article Preview

Abstract:

Through a simple electrodeposition technique, SnO2/MnO2 nanocomposite films were directly deposited onto ultrathin stainless-steel (SS) foils for use in electrochemical supercapacitors. The materials were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD). Electrochemical experiment revealed that the SnO2/MnO2 electrodes exhibited a high gravimetric capacitance of 876 F/g at a current density of 1 A/g. Furthermore, an asymmetric supercapacitor was fabricated using the SnO2/MnO2 nanocomposite as the positive electrode and activated carbon as the negative electrode. This asymmetric device demonstrated a capacitance of 72.2 F/g at 1 A/g and retained approximately 87.5% of its initial capacitance after 28,000 cycles, highlighting its excellent cycling stability and practical application potential. The combination of high capacitance and robust stability makes this SnO2/MnO2 nanocomposite a promising candidate for high-performance supercapacitor electrodes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

59-68

Citation:

Online since:

December 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Zhang, et al., Rational design of NiMn-based electrode materials for high-performance supercapacitors, Coordin. Chem. Rev. 499 (2024), 215494.

Google Scholar

[2] W. Li, et al., Recent progress in the All-Gel-State supercapacitors, Chem. Eng. J. 477 (2023), 146969.

Google Scholar

[3] S. Ali, et al., The emergence of density functional theory for supercapacitors: Recent progress and advances, J. Energy Storage. 73 (2023), 109100.

Google Scholar

[4] J. Liu, et al., MnO2-based materials for supercapacitor electrodes: challenges, strategies and prospects, Rsc Adv. 12 (2022), 35556-35578.

DOI: 10.1039/d2ra06664e

Google Scholar

[5] S. Elsherif, et al., Green synthesis of MnO2 via plant extracts and its composite with exfoliated graphene for high-performance asymmetric supercapacitors, J. Energy Storage. 74 (2023), 109341.

DOI: 10.1016/j.est.2023.109341

Google Scholar

[6] L. Jiang, et al., Pseudocapacitance of chemically stable MnO2-NiO mixture layer on highly conductive Sb doped SnO2 nanowire arrays, Mater. Sci. Eng. B. 260 (2020), 114637.

DOI: 10.1016/j.mseb.2020.114637

Google Scholar

[7] W. Feng, et al., Template synthesis of a heterostructured MnO2@SnO2 hollow sphere composite for high asymmetric supercapacitor performance, ACS Appl. Energy Mater. 3(2020), 7284-7293.

DOI: 10.1021/acsaem.0c00388.s001

Google Scholar

[8] S. Vargheese, et al., Binary metal oxide (MnO2/SnO2) nanostructures supported triazine framework derived nitrogen doped carbon composite for symmetric supercapacitor, J. Energy Storage. 68 (2023), 107671.

DOI: 10.1016/j.est.2023.107671

Google Scholar

[9] D. Govindarajan, et al., In-situ growth of binder-free Cr/NiO thin film electrodes via co-sputtering for asymmetric supercapacitors, Appl. Surf. Sci. 630 (2023), 157475.

DOI: 10.1016/j.apsusc.2023.157475

Google Scholar

[10] D. Huang, et al., TiO2 nanoflowers@Au@MnO2 core-shell composite based on modified Ti foil for flexible supercapacitor electrode, Electrochimica Acta 407 (2022), 139866.

DOI: 10.1016/j.electacta.2022.139866

Google Scholar

[11] H. Shah, et al., In-situ growth of MnO2 nanorods forest on carbon textile as efficient electrode material for supercapacitors, J. Energy Storage. 17 (2018), 318-326.

DOI: 10.1016/j.est.2018.03.015

Google Scholar

[12] H. Shanavaz, et al., Microwave assisted cobalt incorporated covalent organic frameworks as cathode material for asymmetric supercapacitor device, J. Aolloys Compounds. 970 (2024), 172634.

DOI: 10.1016/j.jallcom.2023.172634

Google Scholar

[13] X. Zhang, et al., A mild one-step synthesis of sodium pre-intercalated δ-MnO2@CC for flexible high-performance supercapacitors with ultralong cycle life, Electrochimica Acta 474 (2024), 143543.

DOI: 10.1016/j.electacta.2023.143543

Google Scholar

[14] C. Wang, et al., Ligand field regulation of δ-MnO2 by polyanion modification enables extended potential window in supercapacitors, J. Power Sources 581 (2023), 233462.

DOI: 10.1016/j.jpowsour.2023.233462

Google Scholar

[15] P. Su, et al., Flexible supercapacitor based on MnO2 nanowalls vertically grown on ultrathin stainless-steel foils, Vacuum 233 (2025), 113927.

DOI: 10.1016/j.vacuum.2024.113927

Google Scholar

[16] J. Jablonskiene, et al., Synthesis of carbon-supported MnO2 nanocomposites for supercapacitors application, Crystals 11(2021) 784.

DOI: 10.3390/cryst11070784

Google Scholar

[17] J. Liu, et al., MnO2-based materials for supercapacitor electrodes: challenges, strategies and prospects, RSC Adv. 12 (2022) 35556-35578.

DOI: 10.1039/d2ra06664e

Google Scholar

[18] S. Hassan, M. Suzuki, S. Mori, A. A. El-Moneim, MnO2/carbon nanowalls composite electrode for supercapacitor application, J. Power Sources 249 (2014) 21−27.

DOI: 10.1016/j.jpowsour.2013.10.097

Google Scholar

[19] X.Y. Liu, J. X. Wang, G.W. Yang, Amorphous nickel oxide and crystalline manganese oxide nanocomposite electrode for transparent and flexible supercapacitor, Chem. Eng. J. 347 (2018) 101–110.

DOI: 10.1016/j.cej.2018.04.070

Google Scholar

[20] L. Y. Hou, X. M. Zhi, W. Y. Zhang, H. H. Zhou, Boosting the electrochemical properties of polyaniline by one-step co-doped electrodeposition for high performance flexible supercapacitor applications, J. Electroanalytical Chem. 863 (2020) 114064.

DOI: 10.1016/j.jelechem.2020.114064

Google Scholar

[21] T. Schoetz, et al., Disentangling faradaic, pseudocapacitive, and capacitive charge storage: A tutorial for the characterization of batteries, supercapacitors, and hybrid systems, Electrochimica Acta 412 (2022), 140072.

DOI: 10.1016/j.electacta.2022.140072

Google Scholar

[22] S. Hassan, et al., Microwave-assisted synthesis of CuO/MnO2 nanocomposites for supercapacitor application, Micro Nano Lett. 15 (2020), 938-942 (2020).

DOI: 10.1049/mnl.2020.0400

Google Scholar

[23] J. Zhang, et al., MnO2/carbon nanowalls composite electrode for supercapacitor application, J. Power Sources 249 (2014), 21-27.

DOI: 10.1016/j.jpowsour.2013.10.097

Google Scholar

[24] Y. Zhong, Z. S. Chai, Z. M. Liang, P. Sun, W. G. Xie, C. X. Zhao, W. J. Mai, Electrochromic asymmetric supercapacitor windows enable direct determination of energy status by the naked eye, ACS Appl. Mater. Interfaces, 9 (2017) 34085−34092.

DOI: 10.1021/acsami.7b10334

Google Scholar

[25] C. C. H. Tran, J. Santos-Pena, C. Damas, Electrodeposited manganese oxide supercapacitor microelectrodes with enhanced performance in neutral aqueous electrolyte, Electrochimica Acta, 335 (2020) 135564.

DOI: 10.1016/j.electacta.2019.135564

Google Scholar