[1]
Y. Zhang, et al., Rational design of NiMn-based electrode materials for high-performance supercapacitors, Coordin. Chem. Rev. 499 (2024), 215494.
Google Scholar
[2]
W. Li, et al., Recent progress in the All-Gel-State supercapacitors, Chem. Eng. J. 477 (2023), 146969.
Google Scholar
[3]
S. Ali, et al., The emergence of density functional theory for supercapacitors: Recent progress and advances, J. Energy Storage. 73 (2023), 109100.
Google Scholar
[4]
J. Liu, et al., MnO2-based materials for supercapacitor electrodes: challenges, strategies and prospects, Rsc Adv. 12 (2022), 35556-35578.
DOI: 10.1039/d2ra06664e
Google Scholar
[5]
S. Elsherif, et al., Green synthesis of MnO2 via plant extracts and its composite with exfoliated graphene for high-performance asymmetric supercapacitors, J. Energy Storage. 74 (2023), 109341.
DOI: 10.1016/j.est.2023.109341
Google Scholar
[6]
L. Jiang, et al., Pseudocapacitance of chemically stable MnO2-NiO mixture layer on highly conductive Sb doped SnO2 nanowire arrays, Mater. Sci. Eng. B. 260 (2020), 114637.
DOI: 10.1016/j.mseb.2020.114637
Google Scholar
[7]
W. Feng, et al., Template synthesis of a heterostructured MnO2@SnO2 hollow sphere composite for high asymmetric supercapacitor performance, ACS Appl. Energy Mater. 3(2020), 7284-7293.
DOI: 10.1021/acsaem.0c00388.s001
Google Scholar
[8]
S. Vargheese, et al., Binary metal oxide (MnO2/SnO2) nanostructures supported triazine framework derived nitrogen doped carbon composite for symmetric supercapacitor, J. Energy Storage. 68 (2023), 107671.
DOI: 10.1016/j.est.2023.107671
Google Scholar
[9]
D. Govindarajan, et al., In-situ growth of binder-free Cr/NiO thin film electrodes via co-sputtering for asymmetric supercapacitors, Appl. Surf. Sci. 630 (2023), 157475.
DOI: 10.1016/j.apsusc.2023.157475
Google Scholar
[10]
D. Huang, et al., TiO2 nanoflowers@Au@MnO2 core-shell composite based on modified Ti foil for flexible supercapacitor electrode, Electrochimica Acta 407 (2022), 139866.
DOI: 10.1016/j.electacta.2022.139866
Google Scholar
[11]
H. Shah, et al., In-situ growth of MnO2 nanorods forest on carbon textile as efficient electrode material for supercapacitors, J. Energy Storage. 17 (2018), 318-326.
DOI: 10.1016/j.est.2018.03.015
Google Scholar
[12]
H. Shanavaz, et al., Microwave assisted cobalt incorporated covalent organic frameworks as cathode material for asymmetric supercapacitor device, J. Aolloys Compounds. 970 (2024), 172634.
DOI: 10.1016/j.jallcom.2023.172634
Google Scholar
[13]
X. Zhang, et al., A mild one-step synthesis of sodium pre-intercalated δ-MnO2@CC for flexible high-performance supercapacitors with ultralong cycle life, Electrochimica Acta 474 (2024), 143543.
DOI: 10.1016/j.electacta.2023.143543
Google Scholar
[14]
C. Wang, et al., Ligand field regulation of δ-MnO2 by polyanion modification enables extended potential window in supercapacitors, J. Power Sources 581 (2023), 233462.
DOI: 10.1016/j.jpowsour.2023.233462
Google Scholar
[15]
P. Su, et al., Flexible supercapacitor based on MnO2 nanowalls vertically grown on ultrathin stainless-steel foils, Vacuum 233 (2025), 113927.
DOI: 10.1016/j.vacuum.2024.113927
Google Scholar
[16]
J. Jablonskiene, et al., Synthesis of carbon-supported MnO2 nanocomposites for supercapacitors application, Crystals 11(2021) 784.
DOI: 10.3390/cryst11070784
Google Scholar
[17]
J. Liu, et al., MnO2-based materials for supercapacitor electrodes: challenges, strategies and prospects, RSC Adv. 12 (2022) 35556-35578.
DOI: 10.1039/d2ra06664e
Google Scholar
[18]
S. Hassan, M. Suzuki, S. Mori, A. A. El-Moneim, MnO2/carbon nanowalls composite electrode for supercapacitor application, J. Power Sources 249 (2014) 21−27.
DOI: 10.1016/j.jpowsour.2013.10.097
Google Scholar
[19]
X.Y. Liu, J. X. Wang, G.W. Yang, Amorphous nickel oxide and crystalline manganese oxide nanocomposite electrode for transparent and flexible supercapacitor, Chem. Eng. J. 347 (2018) 101–110.
DOI: 10.1016/j.cej.2018.04.070
Google Scholar
[20]
L. Y. Hou, X. M. Zhi, W. Y. Zhang, H. H. Zhou, Boosting the electrochemical properties of polyaniline by one-step co-doped electrodeposition for high performance flexible supercapacitor applications, J. Electroanalytical Chem. 863 (2020) 114064.
DOI: 10.1016/j.jelechem.2020.114064
Google Scholar
[21]
T. Schoetz, et al., Disentangling faradaic, pseudocapacitive, and capacitive charge storage: A tutorial for the characterization of batteries, supercapacitors, and hybrid systems, Electrochimica Acta 412 (2022), 140072.
DOI: 10.1016/j.electacta.2022.140072
Google Scholar
[22]
S. Hassan, et al., Microwave-assisted synthesis of CuO/MnO2 nanocomposites for supercapacitor application, Micro Nano Lett. 15 (2020), 938-942 (2020).
DOI: 10.1049/mnl.2020.0400
Google Scholar
[23]
J. Zhang, et al., MnO2/carbon nanowalls composite electrode for supercapacitor application, J. Power Sources 249 (2014), 21-27.
DOI: 10.1016/j.jpowsour.2013.10.097
Google Scholar
[24]
Y. Zhong, Z. S. Chai, Z. M. Liang, P. Sun, W. G. Xie, C. X. Zhao, W. J. Mai, Electrochromic asymmetric supercapacitor windows enable direct determination of energy status by the naked eye, ACS Appl. Mater. Interfaces, 9 (2017) 34085−34092.
DOI: 10.1021/acsami.7b10334
Google Scholar
[25]
C. C. H. Tran, J. Santos-Pena, C. Damas, Electrodeposited manganese oxide supercapacitor microelectrodes with enhanced performance in neutral aqueous electrolyte, Electrochimica Acta, 335 (2020) 135564.
DOI: 10.1016/j.electacta.2019.135564
Google Scholar