Functional Device Applications of Nanosilicon

Article Preview

Abstract:

The particular physical functions of quantum-sized silicon have been investigated, along with exploration of their potential device applications. A strong confinement effect fully modifies the original optical, electrical, and thermal properties of bulk silicon. A discussion regarding their control and applications is presented, which addresses blue phosphorescence, enhanced photoconduction, operation of a ballistic electron emitter in solutions, and digital drive of a thermo-acoustic sound emitter.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

20-26

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Koshida (Ed. ), Device Applications of Silicon Nanocrystals and Nanostructures (Springer, New York, 2009).

Google Scholar

[2] B. Gelloz, A. Kojima, and N. Koshida: Appl. Phys. Lett. Vol. 87 (2005), p.031107.

Google Scholar

[3] B. Gelloz and N. Koshida, J. Appl. Phys. Vol. 98 (2005), p.123509.

Google Scholar

[4] B. Gelloz. T. Shibata and N. Koshida. Appl. Phys. Lett. Vol. 89 (2006), p.191103.

Google Scholar

[5] B. Gelloz, R. Mentek and N. Koshida, Jpn. J. Appl. Phys. Vol. 48 (2009), p. 04C119-1.

Google Scholar

[6] B. Gelloz and N. Koshida, Appl. Phys. Lett. Vol. 94 (2009), p.201903.

Google Scholar

[7] A. Chouket, B. Gelloz, H. Koyama, H. Elhouichet, M. Oueslati, and N. Koshida, J. Lumin. Vol. 129(11) (2009), p.1332.

DOI: 10.1016/j.jlumin.2009.06.021

Google Scholar

[8] A. Chouket, H. Elhouichet, M. Oueslati, H. Koyama, B. Gelloz, and N. Koshida, Appl. Phys. Lett. Vol. 91 (2007), p.211902.

DOI: 10.1063/1.2814051

Google Scholar

[9] Y. Hirano, K. Okamoto, S. Yamazaki, and N. Koshida, Appl. Phys. Lett. Vol. 95 (2009), p.063109.

Google Scholar

[10] R. Mentek, B. Gelloz, and N. Koshida, Jpn. J. Appl. Phys. Vol. 49 (2010), p. 04DG22-1.

Google Scholar

[11] N. Koshida, X. Sheng, and T. Komoda, Appl. Surf. Sci. Vol. 146 (1999), p.371.

Google Scholar

[12] N. Mori, H. Minari, S. Uno, H. Mizuta, and N Koshida, J. Phys. Conf. Ser. Vol. 193 (2009), p.012008.

DOI: 10.1088/1742-6596/193/1/012008

Google Scholar

[13] A Kojima, T. Ohta, H. Ohyi, N. Koshida, Proc. SPIE on Advanced Lithography, Vol. 7271 (2009), p. 72712N.

Google Scholar

[14] T. Nakada, T. Sato, Y. Matsuba, R. Tanaka, K. Sakemura, N. Negishi, Y. Okuda, A. Watanabe, T. Yoshikawa, K. Ogasawara, M. Nanba, K. Tanioka, N. Egami, and N. Koshida, J. Vac. Sci. Technol. B Vol. 27 (2009), p.735.

DOI: 10.1116/1.3079653

Google Scholar

[15] T. Ohta, A. Kojima, and N. Koshida, J. Vac. Sci. Technol. B Vol. 25 (2007), p.524.

Google Scholar

[16] T. Ichihara, T. Hatai, and N. Koshida, J. Vac. Sci. Technol. B Vol. 27 (2009), p.772.

Google Scholar

[17] N. Koshida, T. Ohta, and B. Gelloz, Appl. Phys. Lett. Vol. 90 (2007), p.163505.

Google Scholar

[18] T. Ohta, B. Gelloz, and N. Koshida, J. Vac. Sci. Technol. B Vol. 26 (2008), p.716.

Google Scholar

[19] T. Ohta, B. Gelloz, N. Koshida, Electrochem. and Solid-State Lett. Vol. 13 (2010), p. D73.

Google Scholar

[20] H. Shinoda, T. Nakajima, K. Ueno, and N. Koshida, Nature Vol. 400 (1999), p.853.

Google Scholar

[21] N. Koshida, A. Asami, and B. Gelloz, IEDM 2008 Technical Digest, pp.659-662.

Google Scholar

[22] T. Kihara, T. Harada, M. Kato, K. Nakano, O. Murakami, T. Kikusui, and N. Koshida, Appl. Phys. Lett. Vol. 88 (2006), p.043902.

DOI: 10.1063/1.2168498

Google Scholar

[23] A. Uematsu, T. Kikusui, T. Kihara, T. Harada, M. Kato, .K. Nakano, O. Murakami, N. Koshida, Y. Takeuchi, and Y. Mori, Brain Research Vol. 1163 (2007), p.91.

DOI: 10.1016/j.brainres.2007.05.056

Google Scholar

[24] S. Okabe, M. Nagasawa, T. Kihara, M. Kato, T. Harada, N. Koshida, K. Mogi, and T. Kikusui, Zoological Science Vol. 27 (2010), in press. Information on http: /www. tuat. ac. jp/~koslab.

DOI: 10.2108/zsj.27.790

Google Scholar