Revisiting the Site-Competition Doping of 4H-SiC: Cases of N and Al

Article Preview

Abstract:

Because the well-known site-competition and step-controlled epitaxy rules cannot reasonably describe all the incorporation processes of the main impurities (Al and N) into 4H-SiC during epitaxy, the concept of replacement incorporation was proposed and applied to explain the experimental results published so far. In this model, the transient formation of C or Si vacancies at the surface or sub-surface of terraces is proposed to play a key role by destabilizing the impurities sitting on them. In addition to the availability of these vacancies at the surface, desorption was proposed to be a very important limiting process for Al incorporation while only occasionally relevant for N incorporation. The main 4H-SiC epitaxial growth parameters are reviewed and discussed according to the proposed replacement model.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1004)

Pages:

96-101

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.J. Larkin, P.G. Neudeck, J.A. Powell, L.G. Matus, Appl. Phys. Lett. 65 (1994) 1659.

Google Scholar

[2] T. Kimoto, A. Itoh, H. Matsunami, Phys. Stat. Sol. b 202 (1997) 247.

Google Scholar

[3] M. Zielinski, R. Arvinte, T. Chassagne, A. Michon, M. Portail, P. Kwasnicki, L. Konczewicz, S. Contreras, S. Juillaguet, H. Peyre, Mater. Sci. Forum 858 (2016) 137.

DOI: 10.4028/www.scientific.net/msf.858.137

Google Scholar

[4] R. Arvinte, PhD thesis (2016) Côte d'Azur University (France).

Google Scholar

[5] U. Forsberg, O. Danielsson, A. Henry, M.K. Linnarsson, E. Janzén, J. Crystal Growth 253 (2003) 340.

DOI: 10.1016/s0022-0248(03)01045-5

Google Scholar

[6] J. Zhang, A. Ellison, A. Henry, M.K. Linnarsson, E. Janzén, J. Crystal Growth 226 (2001) 267.

Google Scholar

[7] K. Kojima, S. Kuroda, H. Okumura, K. Arai, Appl. Phys. Lett. 88 (2006) 1.

Google Scholar

[8] T. Yamamoto, T. Kimoto, H. Matsunami, Mater. Sci. Forum 264–268 (1998) 111.

Google Scholar

[9] H. Saitoh, A. Manabe, T. Kimoto, Mater. Sci. Forum 527–529 (2006) 223.

Google Scholar

[10] U. Forsberg, O. Danielsson, A. Henry, M.K. Linnarsson, E. Janzén, J. Crystal Growth 236 (2002) 101.

DOI: 10.1016/s0022-0248(01)02198-4

Google Scholar

[11] R.A. Stein, B. Thomas, C. Hecht, Mat. Sci. Forum 556–557 (2007) 89.

Google Scholar

[12] S. Ji, K. Kojima, Y. Ishida, S. Saito, T. Kato, H. Tsuchida, S. Yoshida, H. Okumura, J. Crystal Growth 380 (2013) 85.

Google Scholar

[13] J. Zhang, A. Ellison, A. Henry, M.K. Linnarsson, E. Janzén, J. Crystal Growth 226 (2001) 267.

Google Scholar

[14] T. Hori, K. Danno, T. Kimoto, J. Crystal Growth 306 (2007) 297.

Google Scholar

[15] S.I. Nishizawa, M. Pons, Chemical Vapor Deposition 12, (2006) 516.

Google Scholar

[16] S.I. Nishizawa, in Silicon Carbide Epitaxy (eds F. La Via) Ch. 3, 51–67 (Research Signpost, 2012).

Google Scholar