[1]
A. A. Lebedev, Heterojunctions and superlattices based on silicon carbide, Semicond. Sci. Technol., 21 R17 (2006), doi.org/10.1088/0268-1242/21/6/R01.
DOI: 10.1088/0268-1242/21/6/r01
Google Scholar
[2]
Tsunenobu Kimoto, Material science and device physics in SiC technology for high-voltage power devices, Jpn. J. Appl. Phys.54 040103 (2015), doi.org/10.7567/JJAP.54.040103.
DOI: 10.7567/jjap.54.040103
Google Scholar
[3]
T. Güzel, A. K. Bilgili, ja M. Özer, Investigation of inhomogeneous barrier height for Au/ntype 6H-SiC Schottky diodes in a wide temperature range, Superlattices and Microstructures Volume 124, Pages 30-40, (2018), https://doi.org/10.1016/j.spmi.2018.10.004.
DOI: 10.1016/j.spmi.2018.10.004
Google Scholar
[4]
J. Weber, H. B. Weber, ja M. Krieger, On deep level transient spectroscopy of extended defects in n-type 4H-SiC, Mater. Sci. Forum, kd 897 MSF, lk 201–204, (2017).
DOI: 10.4028/www.scientific.net/msf.897.201
Google Scholar
[5]
W. J. Schaffer, G. H. Negley, K. G. Irvine, and J. W. Palmour, Conductivity Anisotropy in Epitaxial 6H and 4H SiC, Mater. Res. Soc. Symp. Proc., 339, 595, (1994),.
DOI: 10.1557/proc-339-595
Google Scholar
[6]
J. Pernot, S. Contreras, J. Camassel, J. L. Robert, W. Zawadzki, E. Neyret, and L. D. Cioccio, Free electron density and mobility in high-quality 4H–SiC, Appl. Phys. Lett. (2000) 77, 4359, https://doi.org/10.1063/1.1332102.
DOI: 10.1063/1.1332102
Google Scholar
[7]
H. Matsunami and T. Kimoto, Step-controlled epitaxial growth of SiC: High quality homoepitaxy, Mater. Sci. Eng., R. 20, 125 (1997), https://doi.org/10.1016/S0927-796X(97)00005-3.
DOI: 10.1016/s0927-796x(97)00005-3
Google Scholar
[8]
M. Shur, S. Rumyantsev, M. Levinshtein, SiC Materials and Devices, World Scientific, (2006).
Google Scholar
[9]
L. Boussouar a, Z. Ouennoughi a, N. Rouag a, A. Sellai b, R. Weiss c, H. Ryssel c., Investigation of barrier inhomogeneities in Mo/4H–SiC Schottky diodes, Microelectronic Engineering 88, 969–975 (2011), doi.org/10.1016/j.mee.2010.12.070.
DOI: 10.1016/j.mee.2010.12.070
Google Scholar
[10]
Zeghdar Kamal; Dehimi Lakhdar, Inhomogeneous barrier height effect on the currentvoltage characteristics of a W/4H-Sic Schottky diode, 29-31 (2017);.
DOI: 10.1109/icee-b.2017.8192222
Google Scholar
[11]
S Chand and J Kumar, Current-voltage characteristics and barrier parameters of Pd2Si/p Si(111) Schottky diodes in a wide temperature range, Semicond. Sci. Technol.(1995) 10 1680, doi.org/10.1088/0268-1242/10/12/019.
DOI: 10.1088/0268-1242/10/12/019
Google Scholar
[12]
O. KOROLKOV and T. RANG, Comparative characteristics of 6h– and 4h–sic surfaces in diffusion welding., Proc. Estonian Acad. Sci. Eng., 7, 4, 347–353 (2001).
DOI: 10.3176/eng.2001.4.07
Google Scholar
[13]
Korolkov, O., Rang, T., Kuznetsova, N., Ruut, J., Preliminary investigation of diffusion welded contacts to p-type 6H-SiC, BEC Proceedings of the 8th Biennial Baltic Electronics Conference,pp.55-56, (2002).
DOI: 10.1109/bec.2006.311059
Google Scholar
[14]
S. Karatas,S.Altindal,M.Cakar, Current transport in Zn/p-Si(1 0 0) Schottky barrier diodes at high temperatures, Physica B: Condensed Matter, Volume 357, Issues 3–4, Pages 386-397, (2005), doi.org/10.1016/j.physb.2004.12.003.
DOI: 10.1016/j.physb.2004.12.003
Google Scholar
[15]
Fabrizio Roccaforte, Francesco La Via, and Vito Raineri, Richardson's constant in inhomogeneous silicon carbide Schottky contacts, Journal of Applied Physics 93, 9137, (2003), doi.org/10.1063/1.1573750.
DOI: 10.1063/1.1573750
Google Scholar
[16]
Mehadi Hasan Ziko; Ants Koel ; Toomas Rangs., Numerical Simulation of P-Type Al/4HSiC Schottky Barrier diodes, 16th Biennial Baltic Electronics Conference (BEC), (2018),.
DOI: 10.1109/bec.2018.8600976
Google Scholar
[17]
S. M. Sze., Physics of Semiconductor Devices, Wiley, New York, Chaps. 1, 5, 9 (1982).
Google Scholar
[18]
Kyoung, S., Jung, E. S., Kang, T. Y., Sung, M. Y. Improving current density of 4H-SiC junction barrier Schottky diode with wide trench etching, Journal of Nanoscience and Nanotechnology 16(11), 11686-11691 (2016). https://doi.org/10.1166/jnn.2016.13574.
DOI: 10.1166/jnn.2016.13574
Google Scholar
[19]
S. Rao, L. Benedetto, G. Pangallo, A. Rubino, S. Bellone, and F. G. D. Corte. Temperature Sensor Based on a 4H-SiC Schottky Diode, IEEE Sens. J. 16, 6537, (2016),.
DOI: 10.1109/jsen.2016.2591067
Google Scholar
[20]
R. T. Tung., Recent Advances in Schottky Barrier Concepts, Materials Science and Engineering: R, Vol. 35, No. 1-3, pp.1-138 November (2001).
Google Scholar
[21]
Miroslav Barus, Daniel Donoval, Analysis of I-V measurements on CrSi2 Si Schottky structures in a wide temperature range, Solid-State Electronics, Volume 36, Issue 7, Pages 969-974,(1993), doi.org/10.1016/0038-1101(93)90112-4).
DOI: 10.1016/0038-1101(93)90112-4
Google Scholar
[22]
M.K Hudait, P Venkateswarlu, S.B. Krupanidhi, Electrical transport characteristics of Au/n-GaAs Schottky diodes on n-Ge at low temperatures, Solid-State Electronics, Volume 45, Issue 1, Pages 133-141, (2001), doi.org/10.1016/S0038-1101(00)00230-6.
DOI: 10.1016/s0038-1101(00)00230-6
Google Scholar
[23]
D.Donoval, M.Barus, M.Zdimal, Analysis of I–V measurements on PtSi-Si Schottky structures in a wide temperature range, Solid-State Electronics Volume 34, Issue 12, Pages 1365-1373,(1991), doi.org/10.1016/0038-1101(91)90031-S).
DOI: 10.1016/0038-1101(91)90031-s
Google Scholar
[24]
Zs.J.Horváth, A.Bosacchi, S.Franchi, E.Gombia, R.Mosca, A.Motta, Anomalous thermionic-field emission in epitaxial Al/n-AlGaAs junctions, Materials Science and Engineering:B Volume 28, Issues 1–3, Pages 429-432,(1994), https://doi.org/10.1016/0921-5107(94)90099-X.
DOI: 10.1016/0921-5107(94)90099-x
Google Scholar
[25]
R.T. Tung, J.P. Sullivan, F.Schrey, On the inhomogeneity of Schottky barriers, Materials Science and Engineering: B Volume 14, Issue 3, Pages 266-280,(1992), doi.org/10.1016/0921-5107(92)90309-W.
DOI: 10.1016/0921-5107(92)90309-w
Google Scholar
[26]
Jürgen H. Werner and Herbert H. Güttler, Barrier inhomogeneities at Schottky contacts, Journal of Applied Physics 69, 1522, (1991), doi.org/10.1063/1.347243.
DOI: 10.1063/1.347243
Google Scholar
[27]
Priyanka Kaushal, Subhash Chand and Jozef Osvald, Current–voltage characteristics of Schottky diode simulated using semiconductor device equations, International Journal of Electronics, 100:5, 686-698,(2013), DOI. 10.1080/00207217.2012.720946.
DOI: 10.1080/00207217.2012.720946
Google Scholar
[28]
Priyanka Kaushal and Subhash Chand, Numerical analysis of inhomogeneous Schottky diode with discrete barrier height patches, International Journal of Electronics, 103:6, 937-949, (2016), DOI. 10.1080/00207217.2015.1082201.
DOI: 10.1080/00207217.2015.1082201
Google Scholar
[29]
R.Kurel, T.Rang, L.Poirier, An analysis of Critical Parameters for SiC JBS Structures, Proc. of the Estonian Academy of Sciences (284−299). Tallinn: Estonian Academy (2006).
Google Scholar
[30]
T.Rang, R.Kurel, G.Higelin, L.Poirier., Current crowding phenomenon in JBC structures, Computer Methods and Experimental Measurements for Surface Effects and Contact Mechanics, Southampton, New York: Wessex Institute of Technology Press (2005).
Google Scholar
[31]
K. V. Vasilevski, S. V. Rendakova, I. P. Nikitina, A. I. Babanin, and A. N. Andreev, Electrical characteristics and structural properties of ohmic contacts to p-type 4H-SiC epitaxial layers, semiconductors volume 33 (1999).
DOI: 10.1134/1.1187850
Google Scholar
[32]
S.K. Cheung, N.W. Cheung, Extraction of Schottky diode parameters from forward current– voltage characteristics, Appl Phys Lett Vol 49,p.85 , 1986- ppl. Phys. Lett. 49, 85 (1986); https://doi.org/10.1063/1.97359.
DOI: 10.1063/1.97359
Google Scholar
[33]
D. Defives, O. Noblanc, C. Dua, C. Brylinski, M. Barthula, V. Aubry-Fortuna, and F. Meyer, Barrier inhomogeneities and electrical characteristics of Ti/4H-SiC Schottky rectifiers, IEEE Trans. Electron Devices, 46(3), 449–455, (1999), doi.10.1109/16.748861.
DOI: 10.1109/16.748861
Google Scholar
[34]
R. Raghunathan and B. J. Baliga, P-type 4H and 6H-SiC high-voltage Schottky barrier diodes, IEEE Electron Device Lett., 19, 71. (1998), doi.10.1109/55.661168.
DOI: 10.1109/55.661168
Google Scholar
[35]
Rhoderick, E. H and Williams, R. H., Metal-semiconductor contacts (2nd ed), Clarendon Press; New York : Oxford University Press, Oxford (1988).
Google Scholar
[36]
S.K. Lee, C.M. Zetterling, and M. Östling., Schottky diode formation and characterization of titanium tungsten to n- and p-type 4H silicon carbide, Journal of Applied Physics 87, 8039, (2000), doi.org/10.1063/1.373494.
DOI: 10.1063/1.373494
Google Scholar
[37]
Itoh A, Kimoto T, Matsunami H., High performance of high-voltage 4H-SiC Schottky barrier diodes, IEEE Electron Dev Lett. , 16:280–2, (1995), doi.10.1109/55.790735.
DOI: 10.1109/55.790735
Google Scholar
[38]
N.Lundberg, M.Östling, Thermally stable low ohmic contacts to p-type 6H-SiC using cobalt silicides, Solid-State Electronics Volume 39, Issue 11, Pages 1559-1565, (1996), doi.org/10.1016/0038-1101(96)00071-8.
DOI: 10.1016/0038-1101(96)00071-8
Google Scholar
[39]
J. Crofton, J. R. Williams, M. J. Bozack, and P. A. Barnes, TiW high-temperature Ohmic contact to n-type 6H-SiC, Inst. Phys. Conf. Ser. 137, 719 (1994) . Google Scholar.
Google Scholar
[40]
Evans-Freeman JH, Emiroglu D, Vernon-Parry KD, Murphy JD, Wilshaw PR., High resolution deep level transient spectroscopy applied to extended defects in silicon, J Phys: Condens Matter, 17:S2219–27 (2005), doi.org/10.1088/0953-8984/17/22/009.
DOI: 10.1088/0953-8984/17/22/009
Google Scholar
[41]
R.T. Tung, Electron transport at metal-semiconductor interfaces: General theory, Phys. Rev. B 45 13509,(1992), doi.org/10.1103/PhysRevB.45.13509.
DOI: 10.1103/physrevb.45.13509
Google Scholar
[42]
Sullivan J.P, Tung R.T, Pinto MR, Graham WR., Electron transport of inhomogeneous Schottky barriers: A numerical study, J. Appl. Phys. 1991;70:7403-24, doi.org/10.1063/1.349737.
DOI: 10.1063/1.349737
Google Scholar
[43]
J. R. Nicholls, S. Dimitrijev, P. Tanner, ja J. Han, The Role of Near-Interface Traps in Modulating the Barrier Height of SiC Schottky Diodes, IEEE Trans, Electron Devices, kd 66, nr 4, lk 1675–1680, (2019),.
DOI: 10.1109/ted.2019.2896216
Google Scholar
[44]
T.Rang, G.Higelin, R.Kurel, Numerical study of current crowding phenomenon in complementary 4H-SiC JBS rectifiers, Silicon Carbide and Related Materials, Pts 1 and 2, 457-460, 1045−1048 (2004).
DOI: 10.4028/www.scientific.net/msf.457-460.1045
Google Scholar