Analysis of Barrier Inhomogeneities of P-Type Al/4H-SiC Schottky Barrier Diodes

Article Preview

Abstract:

The diffusion welding (DW), known as direct bonding technique could be more used as an alternative approach to develop silicon carbide (SiC) Schottky rectifiers to existing mainstream metallization contact technologies. Measured results for p-type 4H-SiC Schottky barrier diodes (SBD) arepresented. And comprehensive numerical study to characterize the device has been performed. The simulations are carried out with ATLAS software (Silvaco). The measured and numerically simulated forward current-voltage (I–V) and capacitance-voltage (C–V) characteristics in a large temperaturerange are analyzed. Some of the measured p-type 4H-SiC Schottky diodes show deviation in specific ranges of their electrical characteristics. This deviation, especially due to excess current, dominates at low voltages (less than 1 V) and temperatures (less than room temperature). To verify the existence of electrically active defects under the Schottky contact, which influences the Schottky barrier height (SBH) and its inhomogeneity, the deep level transient spectroscopy (DLTS) technology was applied. DLTS measurements show the presence of a deep-level defect with activation energy corresponding typically for multilevel trap clusters.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1004)

Pages:

960-972

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. A. Lebedev, Heterojunctions and superlattices based on silicon carbide, Semicond. Sci. Technol., 21 R17 (2006), doi.org/10.1088/0268-1242/21/6/R01.

DOI: 10.1088/0268-1242/21/6/r01

Google Scholar

[2] Tsunenobu Kimoto, Material science and device physics in SiC technology for high-voltage power devices, Jpn. J. Appl. Phys.54 040103 (2015), doi.org/10.7567/JJAP.54.040103.

DOI: 10.7567/jjap.54.040103

Google Scholar

[3] T. Güzel, A. K. Bilgili, ja M. Özer, Investigation of inhomogeneous barrier height for Au/ntype 6H-SiC Schottky diodes in a wide temperature range, Superlattices and Microstructures Volume 124, Pages 30-40, (2018), https://doi.org/10.1016/j.spmi.2018.10.004.

DOI: 10.1016/j.spmi.2018.10.004

Google Scholar

[4] J. Weber, H. B. Weber, ja M. Krieger, On deep level transient spectroscopy of extended defects in n-type 4H-SiC, Mater. Sci. Forum, kd 897 MSF, lk 201–204, (2017).

DOI: 10.4028/www.scientific.net/msf.897.201

Google Scholar

[5] W. J. Schaffer, G. H. Negley, K. G. Irvine, and J. W. Palmour, Conductivity Anisotropy in Epitaxial 6H and 4H SiC, Mater. Res. Soc. Symp. Proc., 339, 595, (1994),.

DOI: 10.1557/proc-339-595

Google Scholar

[6] J. Pernot, S. Contreras, J. Camassel, J. L. Robert, W. Zawadzki, E. Neyret, and L. D. Cioccio, Free electron density and mobility in high-quality 4H–SiC, Appl. Phys. Lett. (2000) 77, 4359, https://doi.org/10.1063/1.1332102.

DOI: 10.1063/1.1332102

Google Scholar

[7] H. Matsunami and T. Kimoto, Step-controlled epitaxial growth of SiC: High quality homoepitaxy, Mater. Sci. Eng., R. 20, 125 (1997), https://doi.org/10.1016/S0927-796X(97)00005-3.

DOI: 10.1016/s0927-796x(97)00005-3

Google Scholar

[8] M. Shur, S. Rumyantsev, M. Levinshtein, SiC Materials and Devices, World Scientific, (2006).

Google Scholar

[9] L. Boussouar a, Z. Ouennoughi a, N. Rouag a, A. Sellai b, R. Weiss c, H. Ryssel c., Investigation of barrier inhomogeneities in Mo/4H–SiC Schottky diodes, Microelectronic Engineering 88, 969–975 (2011), doi.org/10.1016/j.mee.2010.12.070.

DOI: 10.1016/j.mee.2010.12.070

Google Scholar

[10] Zeghdar Kamal; Dehimi Lakhdar, Inhomogeneous barrier height effect on the currentvoltage characteristics of a W/4H-Sic Schottky diode, 29-31 (2017);.

DOI: 10.1109/icee-b.2017.8192222

Google Scholar

[11] S Chand and J Kumar, Current-voltage characteristics and barrier parameters of Pd2Si/p Si(111) Schottky diodes in a wide temperature range, Semicond. Sci. Technol.(1995) 10 1680, doi.org/10.1088/0268-1242/10/12/019.

DOI: 10.1088/0268-1242/10/12/019

Google Scholar

[12] O. KOROLKOV and T. RANG, Comparative characteristics of 6h– and 4h–sic surfaces in diffusion welding., Proc. Estonian Acad. Sci. Eng., 7, 4, 347–353 (2001).

DOI: 10.3176/eng.2001.4.07

Google Scholar

[13] Korolkov, O., Rang, T., Kuznetsova, N., Ruut, J., Preliminary investigation of diffusion welded contacts to p-type 6H-SiC, BEC Proceedings of the 8th Biennial Baltic Electronics Conference,pp.55-56, (2002).

DOI: 10.1109/bec.2006.311059

Google Scholar

[14] S. Karatas,S.Altindal,M.Cakar, Current transport in Zn/p-Si(1 0 0) Schottky barrier diodes at high temperatures, Physica B: Condensed Matter, Volume 357, Issues 3–4, Pages 386-397, (2005), doi.org/10.1016/j.physb.2004.12.003.

DOI: 10.1016/j.physb.2004.12.003

Google Scholar

[15] Fabrizio Roccaforte, Francesco La Via, and Vito Raineri, Richardson's constant in inhomogeneous silicon carbide Schottky contacts, Journal of Applied Physics 93, 9137, (2003), doi.org/10.1063/1.1573750.

DOI: 10.1063/1.1573750

Google Scholar

[16] Mehadi Hasan Ziko; Ants Koel ; Toomas Rangs., Numerical Simulation of P-Type Al/4HSiC Schottky Barrier diodes, 16th Biennial Baltic Electronics Conference (BEC), (2018),.

DOI: 10.1109/bec.2018.8600976

Google Scholar

[17] S. M. Sze., Physics of Semiconductor Devices, Wiley, New York, Chaps. 1, 5, 9 (1982).

Google Scholar

[18] Kyoung, S., Jung, E. S., Kang, T. Y., Sung, M. Y. Improving current density of 4H-SiC junction barrier Schottky diode with wide trench etching, Journal of Nanoscience and Nanotechnology 16(11), 11686-11691 (2016). https://doi.org/10.1166/jnn.2016.13574.

DOI: 10.1166/jnn.2016.13574

Google Scholar

[19] S. Rao, L. Benedetto, G. Pangallo, A. Rubino, S. Bellone, and F. G. D. Corte. Temperature Sensor Based on a 4H-SiC Schottky Diode, IEEE Sens. J. 16, 6537, (2016),.

DOI: 10.1109/jsen.2016.2591067

Google Scholar

[20] R. T. Tung., Recent Advances in Schottky Barrier Concepts, Materials Science and Engineering: R, Vol. 35, No. 1-3, pp.1-138 November (2001).

Google Scholar

[21] Miroslav Barus, Daniel Donoval, Analysis of I-V measurements on CrSi2 Si Schottky structures in a wide temperature range, Solid-State Electronics, Volume 36, Issue 7, Pages 969-974,(1993), doi.org/10.1016/0038-1101(93)90112-4).

DOI: 10.1016/0038-1101(93)90112-4

Google Scholar

[22] M.K Hudait, P Venkateswarlu, S.B. Krupanidhi, Electrical transport characteristics of Au/n-GaAs Schottky diodes on n-Ge at low temperatures, Solid-State Electronics, Volume 45, Issue 1, Pages 133-141, (2001), doi.org/10.1016/S0038-1101(00)00230-6.

DOI: 10.1016/s0038-1101(00)00230-6

Google Scholar

[23] D.Donoval, M.Barus, M.Zdimal, Analysis of I–V measurements on PtSi-Si Schottky structures in a wide temperature range, Solid-State Electronics Volume 34, Issue 12, Pages 1365-1373,(1991), doi.org/10.1016/0038-1101(91)90031-S).

DOI: 10.1016/0038-1101(91)90031-s

Google Scholar

[24] Zs.J.Horváth, A.Bosacchi, S.Franchi, E.Gombia, R.Mosca, A.Motta, Anomalous thermionic-field emission in epitaxial Al/n-AlGaAs junctions, Materials Science and Engineering:B Volume 28, Issues 1–3, Pages 429-432,(1994), https://doi.org/10.1016/0921-5107(94)90099-X.

DOI: 10.1016/0921-5107(94)90099-x

Google Scholar

[25] R.T. Tung, J.P. Sullivan, F.Schrey, On the inhomogeneity of Schottky barriers, Materials Science and Engineering: B Volume 14, Issue 3, Pages 266-280,(1992), doi.org/10.1016/0921-5107(92)90309-W.

DOI: 10.1016/0921-5107(92)90309-w

Google Scholar

[26] Jürgen H. Werner and Herbert H. Güttler, Barrier inhomogeneities at Schottky contacts, Journal of Applied Physics 69, 1522, (1991), doi.org/10.1063/1.347243.

DOI: 10.1063/1.347243

Google Scholar

[27] Priyanka Kaushal, Subhash Chand and Jozef Osvald, Current–voltage characteristics of Schottky diode simulated using semiconductor device equations, International Journal of Electronics, 100:5, 686-698,(2013), DOI. 10.1080/00207217.2012.720946.

DOI: 10.1080/00207217.2012.720946

Google Scholar

[28] Priyanka Kaushal and Subhash Chand, Numerical analysis of inhomogeneous Schottky diode with discrete barrier height patches, International Journal of Electronics, 103:6, 937-949, (2016), DOI. 10.1080/00207217.2015.1082201.

DOI: 10.1080/00207217.2015.1082201

Google Scholar

[29] R.Kurel, T.Rang, L.Poirier, An analysis of Critical Parameters for SiC JBS Structures, Proc. of the Estonian Academy of Sciences (284−299). Tallinn: Estonian Academy (2006).

Google Scholar

[30] T.Rang, R.Kurel, G.Higelin, L.Poirier., Current crowding phenomenon in JBC structures, Computer Methods and Experimental Measurements for Surface Effects and Contact Mechanics, Southampton, New York: Wessex Institute of Technology Press (2005).

Google Scholar

[31] K. V. Vasilevski, S. V. Rendakova, I. P. Nikitina, A. I. Babanin, and A. N. Andreev, Electrical characteristics and structural properties of ohmic contacts to p-type 4H-SiC epitaxial layers, semiconductors volume 33 (1999).

DOI: 10.1134/1.1187850

Google Scholar

[32] S.K. Cheung, N.W. Cheung, Extraction of Schottky diode parameters from forward current– voltage characteristics, Appl Phys Lett Vol 49,p.85 , 1986- ppl. Phys. Lett. 49, 85 (1986); https://doi.org/10.1063/1.97359.

DOI: 10.1063/1.97359

Google Scholar

[33] D. Defives, O. Noblanc, C. Dua, C. Brylinski, M. Barthula, V. Aubry-Fortuna, and F. Meyer, Barrier inhomogeneities and electrical characteristics of Ti/4H-SiC Schottky rectifiers, IEEE Trans. Electron Devices, 46(3), 449–455, (1999), doi.10.1109/16.748861.

DOI: 10.1109/16.748861

Google Scholar

[34] R. Raghunathan and B. J. Baliga, P-type 4H and 6H-SiC high-voltage Schottky barrier diodes, IEEE Electron Device Lett., 19, 71. (1998), doi.10.1109/55.661168.

DOI: 10.1109/55.661168

Google Scholar

[35] Rhoderick, E. H and Williams, R. H., Metal-semiconductor contacts (2nd ed), Clarendon Press; New York : Oxford University Press, Oxford (1988).

Google Scholar

[36] S.K. Lee, C.M. Zetterling, and M. Östling., Schottky diode formation and characterization of titanium tungsten to n- and p-type 4H silicon carbide, Journal of Applied Physics 87, 8039, (2000), doi.org/10.1063/1.373494.

DOI: 10.1063/1.373494

Google Scholar

[37] Itoh A, Kimoto T, Matsunami H., High performance of high-voltage 4H-SiC Schottky barrier diodes, IEEE Electron Dev Lett. , 16:280–2, (1995), doi.10.1109/55.790735.

DOI: 10.1109/55.790735

Google Scholar

[38] N.Lundberg, M.Östling, Thermally stable low ohmic contacts to p-type 6H-SiC using cobalt silicides, Solid-State Electronics Volume 39, Issue 11, Pages 1559-1565, (1996), doi.org/10.1016/0038-1101(96)00071-8.

DOI: 10.1016/0038-1101(96)00071-8

Google Scholar

[39] J. Crofton, J. R. Williams, M. J. Bozack, and P. A. Barnes, TiW high-temperature Ohmic contact to n-type 6H-SiC, Inst. Phys. Conf. Ser. 137, 719 (1994) . Google Scholar.

Google Scholar

[40] Evans-Freeman JH, Emiroglu D, Vernon-Parry KD, Murphy JD, Wilshaw PR., High resolution deep level transient spectroscopy applied to extended defects in silicon, J Phys: Condens Matter, 17:S2219–27 (2005), doi.org/10.1088/0953-8984/17/22/009.

DOI: 10.1088/0953-8984/17/22/009

Google Scholar

[41] R.T. Tung, Electron transport at metal-semiconductor interfaces: General theory, Phys. Rev. B 45 13509,(1992), doi.org/10.1103/PhysRevB.45.13509.

DOI: 10.1103/physrevb.45.13509

Google Scholar

[42] Sullivan J.P, Tung R.T, Pinto MR, Graham WR., Electron transport of inhomogeneous Schottky barriers: A numerical study, J. Appl. Phys. 1991;70:7403-24, doi.org/10.1063/1.349737.

DOI: 10.1063/1.349737

Google Scholar

[43] J. R. Nicholls, S. Dimitrijev, P. Tanner, ja J. Han, The Role of Near-Interface Traps in Modulating the Barrier Height of SiC Schottky Diodes, IEEE Trans, Electron Devices, kd 66, nr 4, lk 1675–1680, (2019),.

DOI: 10.1109/ted.2019.2896216

Google Scholar

[44] T.Rang, G.Higelin, R.Kurel, Numerical study of current crowding phenomenon in complementary 4H-SiC JBS rectifiers, Silicon Carbide and Related Materials, Pts 1 and 2, 457-460, 1045−1048 (2004).

DOI: 10.4028/www.scientific.net/msf.457-460.1045

Google Scholar