[1]
X. Wang, and J. A. Cooper, High-Voltage n-Channel IGBTs on Free-Standing 4H-SiC Epilayers, IEEE Trans. Electron Devices. 57.2 (2010) 511-515.
DOI: 10.1109/ted.2009.2037379
Google Scholar
[2]
S. Katakami, H. Fujisawa, K. Takenaka, et al., Fabrication of a P-channel SiC-IGBT with high channel mobility, Mater. Sci. Forum. 740-742 (2013) 958-961.
DOI: 10.4028/www.scientific.net/msf.740-742.958
Google Scholar
[3]
S. Ryu, C. Capell, C. Jonas, et al., 15 kV IGBTs in 4H-SiC, Mater. Sci. Forum. 740-742 (2013) 954-957.
DOI: 10.4028/www.scientific.net/msf.740-742.954
Google Scholar
[4]
Q. Zhang, M. Das, J. Sumakeris, et al., 12-kV p-Channel IGBTs with Low On-Resistance in 4H-SiC, IEEE Electron Device Lett., 29.9 (2008) 1027-1029.
DOI: 10.1109/led.2008.2001739
Google Scholar
[5]
Q. Zhang, J. Wang, C. Jonas, et al., Design and Characterization of High-Voltage 4H-SiC p-IGBTs, IEEE Trans. Electron Devices. 55.8 (2008) 1912-1919.
DOI: 10.1109/ted.2008.926627
Google Scholar
[6]
E. Brunt, L. Cheng, M. O'Loughlin, et al., 22 kV, 1 cm2, 4H-SiC n-IGBTs with Improved Conductivity Modulation, 2014 Proc. 26th Int. Symp. Power Semicond. Devices IC's, Hawaii, America, June 2014, 358-361.
DOI: 10.1109/ispsd.2014.6856050
Google Scholar
[7]
S. Ryu, C. Capell, C. Jonas, et al., 20 kV 4H-SiC N-IGBTs, Mater. Sci. Forum. 778-780 (2014) 1030-1033.
DOI: 10.4028/www.scientific.net/msf.778-780.1030
Google Scholar
[8]
K. Fukuda, D. Okamoto, M. Okamoto, et al., Development of Ultrahigh-Voltage SiC Devices, IEEE Trans. Electron Devices. 62.2 (2015) 396-404.
DOI: 10.1109/ted.2014.2357812
Google Scholar
[9]
E. V. Brunt, L. Cheng, M. O'Loughlin, et al., 27 kV, 20 Ampere-rated 4H-SiC n-IGBTs, Mater. Sci. Forum. 821-823 (2015) 847-850.
DOI: 10.4028/www.scientific.net/msf.821-823.847
Google Scholar
[10]
Q. Zhang, C. Jonas, S. Ryu, et al., Design and fabrications of high voltage IGBTs on 4H-SiC, in Proc. ISPSD, Naples, Italy, June 2006, 285-288.
DOI: 10.1109/ispsd.2006.1666127
Google Scholar
[11]
D. Okamoto, M. Sometani, S. Harada, et al., Improved Channel Mobility in 4H-SiC MOSFETs by Boron Passivation, IEEE Electron Device Lett., 35.12 (2014) 1176-1178.
DOI: 10.1109/led.2014.2362768
Google Scholar
[12]
T. Kimoto, K. Kawahara, B. Zippelius, et al., Control of carbon vacancy in SiC toward ultrahigh-voltage power devices, Superlattices and Microstructures. 99 (2016) 151-157.
DOI: 10.1016/j.spmi.2016.03.029
Google Scholar
[13]
X. Tian, B. Tan, Y. Bai, et al., Simulation Study for the Structural Cell Design Optimization of 15kV SiC p-Channel IGBTs, Mater. Sci. Forum, 963 (2019) 666-669.
DOI: 10.4028/www.scientific.net/msf.963.666
Google Scholar
[14]
H. Shen, Y. Tang, Z. Peng, et al., Fabrication and Characterization of 1700V 4H-SiC Vertical Double-Implanted Metal-Oxide-Semiconductor Field-Effect Transistors, Chin. Phys. Lett., 32. 12 (2015) 127101-1-4.
DOI: 10.1088/0256-307x/32/12/127101
Google Scholar
[15]
B. Tan, X. Tian, J. Lu, et al., Design and Optimization of Four-Region Multistep Field Limiting Rings for 10kV 4H-SiC IGBTs, 2018 Proc. 14th IEEE Int. Conf. Solid-state and Integrated Circuit Technology, Qingdao, China, Nov 2018, 1-3.
DOI: 10.1109/icsict.2018.8565661
Google Scholar
[16]
H. Jiang, J. Wei, X. Dai, et al., SiC Trench MOSFET with Shielded Fin-Shaped Gate to Reduce Oxide Field and Switching Loss, IEEE Electron Device Lett., 37.10 (2016) 1324-1327.
DOI: 10.1109/led.2016.2599921
Google Scholar