Ni/Heavily-Doped 4H-SiC Schottky Contacts

Article Preview

Abstract:

In this work, we focus on the electrical characterization of Ni Schottky contact on n-type heavily doped (ND>1019 cm−3) 4H-SiC layer, achieved by P-ion implantation. In particular, the forward current–voltage characterization of Schottky diodes showed a reduced turn-on voltage for the Ni/heavily-doped 4H-SiC if compared to a reference Ni/4H-SiC Schottky contact fabricated under similar conditions but without implant. Moreover, it was observed the predominance of a thermionic-field-emission (TFE) mechanism for the current transport through the interface. From a current-voltage-temperature (I-V-T) study, the temperature-dependence of the Schottky barrier and doping concentration were evaluated, obtaining a reduction of the barrier (from 1.77 to 1.66 eV), while the doping concentration maintains constant around 1.96×1019 cm-3. This study provides useful insights for a deeper comprehension of the electrical behavior of Ni contacts and can have possible applications in 4H-SiC Schottky diode technology.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] X. She, A. Q. Huang, O. Lucìa and B. Ozpineci, IEEE Trans. Ind. Electron. 64 (2017) 8193.

Google Scholar

[2] R. Weiss, L. Frey and H. Ryssel, Appl. Surf. Sci. 184 (2001) 413.

Google Scholar

[3] A. B. Renz, V. A. Shah, O. J. Vavasour, Y. Bonyadi et al., J. Appl. Phys. 127 (2020) 025704.

Google Scholar

[4] F. Roccaforte, C. Bongiorno, F. La Via and V. Raineri Appl. Phys. Lett. 85 (2004) 6152.

Google Scholar

[5] M. Hara, S. Asada, T. Maeda and T. Kimoto, Appl. Phys. Express 13 (2020) 041001.

Google Scholar

[6] F. Roccaforte, P. Fiorenza, M. Vivona, G. Greco, F. Giannazzo, Materials 14 (2021) 3923.

DOI: 10.3390/ma14143923

Google Scholar

[7] R. Pérez, N. Mestres, M. Vellvehi, P. Godignon et al., Semicond. Sci. Technol. 21 (2006) 670.

Google Scholar

[8] A. Severino, D. Mello, S. Boninelli, F. Roccaforte et al., Mater. Sci. Forum 963 (2019) 407.

Google Scholar

[9] M. Spera, G. Greco, A. Severino, M. Vivona et al., Appl. Phys. Lett. 117 (2020) 013502.

Google Scholar

[10] R. Nipoti, A. Nath, S. B. Qadri, Y.-L. Tian et al., J. Electron. Mater. 41 (2012) 45.

Google Scholar

[11] M. Vivona, G. Greco, F. Giannazzo et al., Semicond. Sci. Technol. 29 (2014) 075018.

Google Scholar

[12] M. Vivona, G. Greco, M. Spera, P. Fiorenza et al., J. Phys. D: Apl. Phys. 54 (2021) 445107.

Google Scholar

[13] E. Rhoderick, IEEE Proc. 129 (1982) 1.

Google Scholar

[14] F. Roccaforte, F. La Via, V. Raineri, J. Appl. Phys. 93 (2003) 9137-9144.

Google Scholar

[15] F. A. Padovani and R. Stratton, Solid-State Electron. 9 (1966) 695.

Google Scholar

[16] F. Roccaforte, F. La Via and V. Raineri, Int. J. High Speed Electron. Syst. 15 (2005) 781.

Google Scholar

[17] M.S. Sze, K. Ng. Kwok, Physics of Semiconductor Devices; John Wiley & Sons, USA, (2007).

Google Scholar