[1]
C. Salcines, I. Kallfass, H. Kakitani, A. Mikata, Dynamic characterization of the input and reverse transfer capacitances in power MOSFETs under high current conduction, 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, (2016) 2969-2972.
DOI: 10.1109/apec.2016.7468285
Google Scholar
[2]
R. Stark, I. Kovacevic-Badstübner, A. Tsibizov, B. Kakarla, Y. Ju, B. Jaeger, T. Ziemann, U. Grossner, Analysis of parameters determining nominal dynamic performance of 1.2 kV SiC power MOSFETs, Proc. of IEEE 30th Int. Symp. on Power Semiconductor Devices and ICs (ISPSD), (2018) 407–410.
DOI: 10.1109/ispsd.2018.8393689
Google Scholar
[3]
Wolfspeed, C2M0080120D Silicon Carbide Power MOSFET, Rev. D, 09-2019. [Online]. Available: https://www.wolfspeed.com/media/downloads/167/C2M0080120D.pdf.
Google Scholar
[4]
H. Li, Xingran Zhao, Kai Sun, Z. Zhao, G. Cao, T. Zheng. A Non-Segmented PSpice Model of SiC mosfet With Temperature-Dependent Parameters, IEEE Trans. Power Electron. 34, (2019) 4603-4612.
DOI: 10.1109/tpel.2018.2865611
Google Scholar
[5]
S.Y. Liu, Y.F. Jiang, W.J. Sung, X.Q. Song, B.J. Baliga, W.F. Sun, A.Q. Huang, Understanding High Temperature Static and Dynamic Characteristics of 1.2 kV SiC Power MOSFETs, Materials Science Forum 897, (2017) 501–504.
DOI: 10.4028/www.scientific.net/msf.897.501
Google Scholar
[6]
T. Funaki, N. Phankong, T. Kimoto, T. Hikihara, Measuring Terminal Capacitance and Its Voltage Dependency for High-Voltage Power Devices, IEEE Trans. Power Electron. 24, (2009) 1486-1493.
DOI: 10.1109/tpel.2009.2016566
Google Scholar
[7]
C. Salcines, B. Holzinger, I. Kallfass, Characterization of Intrinsic Capacitances of Power Transistors Under High Current Conduction Based on Pulsed S-Parameter Measurements, 2018 IEEE 6th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Atlanta, GA, (2018) 180-184.
DOI: 10.1109/wipda.2018.8569185
Google Scholar
[8]
H. Sakairi, T. Yanagi, H. Otake, N. Kuroda and H. Tanigawa, Measurement Methodology for Accurate Modeling of SiC MOSFET Switching Behavior Over Wide Voltage and Current Ranges,, IEEE Trans. Power Electron. 33, (2018) 7314-7325.
DOI: 10.1109/tpel.2017.2764632
Google Scholar
[9]
C. Deml, K. Hoffmann, Gate-drain capacitance behaviour of the DMOS power transistor under high current flow, PESC 98 Record. 29th Annual IEEE Power Electronics Specialists Conference (Cat. No.98CH36196), Fukuoka, vol.2, (1998) 1716-1719.
DOI: 10.1109/pesc.1998.703412
Google Scholar
[10]
A. Tsibizov, I. Kovačević-Badstübner, B. Kakarla, U. Grossner, Accurate Temperature Estimation of SiC Power mosfets Under Extreme Operating Conditions, IEEE Trans. Power Electron. 35, (2020) 1855-1865.
DOI: 10.1109/tpel.2019.2917221
Google Scholar
[11]
I. Kovačević-Badstübner, U. Grossner, D. Romano, G. Antonini, J. Ekman, A more accurate electromagnetic modeling of WBG power modules, 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Chicago, IL, (2018) 260-263.
DOI: 10.1109/ispsd.2018.8393652
Google Scholar
[12]
D. E. Ward, R. W. Dutton, A Charge-Oriented Model for MOS Transistor Capacitances, IEEE J. Solid-State Circuits 13, (1978) 703–708.
DOI: 10.1109/jssc.1978.1051123
Google Scholar
[13]
J. Müting, U. Grossner, Simulation-Based Sensitivity Analysis of Conduction and Switching Losses for Silicon Carbide Power MOSFETs, Materials Science Forum 924, (2018) 693-696.
DOI: 10.4028/www.scientific.net/msf.924.693
Google Scholar
[14]
C. M. Liu, J. B. Kuo, Quasi-Saturation Capacitance Behavior of a DMOS Device, IEEE Trans. Electron Devices 44, (1997) 1117–1123.
DOI: 10.1109/16.595939
Google Scholar