Temperature Dependence of On-State Inter-Terminal Capacitances (Cgd and Cgs) of SiC MOSFETs and Frequency Limitations of their Measurements

Article Preview

Abstract:

Inter-terminal capacitances (ITCs) have major influence on the dynamic performance of power SiC MOSFETs. Knowledge of the exact values for the ITCs is required in order to perform accurate and predictive compact model simulations of their dynamic performance. Since commercial SiC MOSFETs are capable of operating in a wide range of temperatures, it is important to know the values of ITCs in the whole temperature range of operation. Direct measurements of the ITCs with standard equipment is possible only at low current levels (i.e. in the off-state (Vgs < Vth) for Vds > 0 V), however their values in the on-state (Vgs>Vth) also influence the MOSFETs switching performance. In this work, ITCs of a planar SiC MOSFET in the on-state are studied by the means of a calibrated TCAD model, revealing substantial temperature dependence in the range of 300-450 K. In the first approximation, this temperature dependence of the ITCs can be explained by a weaker temperature dependence of the MOSFET channel resistance in comparison to its JFET and epitaxial layer resistances. In addition, it is shown that at high frequencies stray inductances of the TO-247-3 package result in a change of the extracted values of the on-state ITCs. This effect is already notable at 1 MHz.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] C. Salcines, I. Kallfass, H. Kakitani, A. Mikata, Dynamic characterization of the input and reverse transfer capacitances in power MOSFETs under high current conduction, 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, (2016) 2969-2972.

DOI: 10.1109/apec.2016.7468285

Google Scholar

[2] R. Stark, I. Kovacevic-Badstübner, A. Tsibizov, B. Kakarla, Y. Ju, B. Jaeger, T. Ziemann, U. Grossner, Analysis of parameters determining nominal dynamic performance of 1.2 kV SiC power MOSFETs, Proc. of IEEE 30th Int. Symp. on Power Semiconductor Devices and ICs (ISPSD), (2018) 407–410.

DOI: 10.1109/ispsd.2018.8393689

Google Scholar

[3] Wolfspeed, C2M0080120D Silicon Carbide Power MOSFET, Rev. D, 09-2019. [Online]. Available: https://www.wolfspeed.com/media/downloads/167/C2M0080120D.pdf.

Google Scholar

[4] H. Li, Xingran Zhao, Kai Sun, Z. Zhao, G. Cao, T. Zheng. A Non-Segmented PSpice Model of SiC mosfet With Temperature-Dependent Parameters, IEEE Trans. Power Electron. 34, (2019) 4603-4612.

DOI: 10.1109/tpel.2018.2865611

Google Scholar

[5] S.Y. Liu, Y.F. Jiang, W.J. Sung, X.Q. Song, B.J. Baliga, W.F. Sun, A.Q. Huang, Understanding High Temperature Static and Dynamic Characteristics of 1.2 kV SiC Power MOSFETs, Materials Science Forum 897, (2017) 501–504.

DOI: 10.4028/www.scientific.net/msf.897.501

Google Scholar

[6] T. Funaki, N. Phankong, T. Kimoto, T. Hikihara, Measuring Terminal Capacitance and Its Voltage Dependency for High-Voltage Power Devices, IEEE Trans. Power Electron. 24, (2009) 1486-1493.

DOI: 10.1109/tpel.2009.2016566

Google Scholar

[7] C. Salcines, B. Holzinger, I. Kallfass, Characterization of Intrinsic Capacitances of Power Transistors Under High Current Conduction Based on Pulsed S-Parameter Measurements, 2018 IEEE 6th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Atlanta, GA, (2018) 180-184.

DOI: 10.1109/wipda.2018.8569185

Google Scholar

[8] H. Sakairi, T. Yanagi, H. Otake, N. Kuroda and H. Tanigawa, Measurement Methodology for Accurate Modeling of SiC MOSFET Switching Behavior Over Wide Voltage and Current Ranges,, IEEE Trans. Power Electron. 33, (2018) 7314-7325.

DOI: 10.1109/tpel.2017.2764632

Google Scholar

[9] C. Deml, K. Hoffmann, Gate-drain capacitance behaviour of the DMOS power transistor under high current flow, PESC 98 Record. 29th Annual IEEE Power Electronics Specialists Conference (Cat. No.98CH36196), Fukuoka, vol.2, (1998) 1716-1719.

DOI: 10.1109/pesc.1998.703412

Google Scholar

[10] A. Tsibizov, I. Kovačević-Badstübner, B. Kakarla, U. Grossner, Accurate Temperature Estimation of SiC Power mosfets Under Extreme Operating Conditions, IEEE Trans. Power Electron. 35, (2020) 1855-1865.

DOI: 10.1109/tpel.2019.2917221

Google Scholar

[11] I. Kovačević-Badstübner, U. Grossner, D. Romano, G. Antonini, J. Ekman, A more accurate electromagnetic modeling of WBG power modules, 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Chicago, IL, (2018) 260-263.

DOI: 10.1109/ispsd.2018.8393652

Google Scholar

[12] D. E. Ward, R. W. Dutton, A Charge-Oriented Model for MOS Transistor Capacitances, IEEE J. Solid-State Circuits 13, (1978) 703–708.

DOI: 10.1109/jssc.1978.1051123

Google Scholar

[13] J. Müting, U. Grossner, Simulation-Based Sensitivity Analysis of Conduction and Switching Losses for Silicon Carbide Power MOSFETs, Materials Science Forum 924, (2018) 693-696.

DOI: 10.4028/www.scientific.net/msf.924.693

Google Scholar

[14] C. M. Liu, J. B. Kuo, Quasi-Saturation Capacitance Behavior of a DMOS Device, IEEE Trans. Electron Devices 44, (1997) 1117–1123.

DOI: 10.1109/16.595939

Google Scholar