Experimental Analysis of C-V and I-V Curves Hysteresis in SiC MOSFETs

Article Preview

Abstract:

SiC MOSFETs have already replace silicon-based device in power applications, even if some technological issues are still not solved. The most important of them is related to the complex traps distribution at SiC/SiO2 interface. Interface traps affect the overall device behavior, modifying channel mobility and introducing hysteresis. In this work experimental C-V and I-V curves are carried out on various commercial SiC MOSFET at different temperatures. The focus is the comparison of hysteresis arising in trench and planar SiC MOSFETs.

You have full access to the following eBook

Info:

Periodical:

Materials Science Forum (Volume 1062)

Pages:

669-675

Citation:

Online since:

May 2022

Export:

Share:

Citation:

* - Corresponding Author

[1] Baliga, B. J. Fundamentals of power semiconductor devices,. Springer Science & Business Media (2010).

Google Scholar

[2] C. Raynaud, J. L. Autran, J. B. Briot, B. Balland, N. Becourt, T. Billon, and C. Jaussaud. Comparison of trapping–detrapping properties of mobile charge in alkali contaminated metal‐oxide‐silicon carbide structures., Applied physics letters 66, no. 18: 2340-2342 (1995).

DOI: 10.1063/1.113976

Google Scholar

[3] V. V. Afanasev, M. Bassler, G. Pensl, and M. Schulz. Intrinsic SiC/SiO2 interface states., physica status solidi (a) 162, no. 1: 321-337 (1997).

DOI: 10.1002/1521-396x(199707)162:1<321::aid-pssa321>3.0.co;2-f

Google Scholar

[4] Peters D. et al. Investigation of threshold voltage stability of SiC MOSFETs., ISPSD (2018).

Google Scholar

[5] Okamoto M. et al. Coexistence of small threshold voltage instability and high channel mobility in 4H-SiC (0001) metal–oxide–semiconductor field-effect transistors., Applied Physics Express, vol. 5, nr. 4, p.041302 (2012).

DOI: 10.1143/apex.5.041302

Google Scholar

[6] Maresca, L. et al. Influence of the SiC/SiO2 SiC MOSFET Interface Traps Distribution on C–V Measurements Evaluated by TCAD Simulations,, IEEE Journal of Emerging and Selected Topics in Power Electronics, DOI 10.1109/JESTPE,2940143 (2019).

DOI: 10.1109/jestpe.2019.2940143

Google Scholar

[7] Matacena, Ilaria, et al. Evaluation of Interface Traps Type, Energy Level and Density of SiC MOSFETs by Means of CV Curves TCAD Simulations., Materials Science Forum. Vol. 1004. Trans Tech Publications Ltd, (2020).

DOI: 10.4028/www.scientific.net/msf.1004.608

Google Scholar

[8] Sentaurus, T. C. A. D. Manuals., Synopsys Inc., Mountain View, CA 94043 (2009).

Google Scholar

[9] Romano, G., et al. Short-circuit failure mechanism of SiC power MOSFETs." 2015 IEEE 27th International Symposium on Power Semiconductor Devices & IC,s (ISPSD). IEEE (2015).

DOI: 10.1109/ispsd.2015.7123460

Google Scholar

[10] Romano G. et al. A comprehensive study of short-circuit ruggedness of silicon carbide power MOSFETs., IEEE Journal of Emerging and Selected Topics in Power Electronics 4.3, pp.978-987 (2016).

DOI: 10.1109/jestpe.2016.2563220

Google Scholar

[11] Maresca, Luca, et al. TCAD model calibration for the SiC/SiO 2 interface trap distribution of a planar SiC MOSFET., 2020 IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia). IEEE, (2020).

DOI: 10.1109/wipdaasia49671.2020.9360298

Google Scholar

[12] CMF20120, https://www.alldatasheet.com/datasheet-pdf/pdf/403793/CREE/CMF20120D .html.

Google Scholar

[13] 12M1H140, https://www.infineon.com/dgdl/Infineon-IMW120R140M1H-DataSheet-v02_01-EN.pdf?fileId=5546d46269e1c019016a92fdf712669d.

Google Scholar