4H-SiC Lateral RESURF MOSFETs on Carbon-Face Substrates

Abstract:

Article Preview

We have fabricated lateral RESURF MOSFETs on 4H-SiC(0001) Si-face and (000-1) C-face substrates, and compared those properties. The channel mobility of a lateral test MOSFET on a C-face was 41 cm2/Vs, which was much higher than 5 cm2/Vs for that on a Si-face. The specific on-resistance of the lateral RESURF MOSFET on a C-face was improved to 79 mΩcm2 as comparison with 2400 mΩcm2 for Si-face. The breakdown voltage was 490V for Si-face and 460V for C-face, which was 82% and 79% of the designed breakdown voltage of 600V, respectively. The device breakdown occurred destructively at the gate electrode edge.

Info:

Periodical:

Materials Science Forum (Volumes 483-485)

Edited by:

Dr. Roberta Nipoti, Antonella Poggi and Andrea Scorzoni

Pages:

805-808

Citation:

M. Okamoto et al., "4H-SiC Lateral RESURF MOSFETs on Carbon-Face Substrates", Materials Science Forum, Vols. 483-485, pp. 805-808, 2005

Online since:

May 2005

Export:

Price:

$38.00

[1] A. K. Agarwal, J. B. Casady, W.F. Valek, M. H. White, and C. D. Brandt: IEEE Electron Device Lett. Vol. 18 (1997), p.586.

DOI: https://doi.org/10.1109/55.644079

[2] Y. Li, J.A. Cooper, M.A. Capano: Mater. Sci. Forum, Vol. 389-393 (2002), p.1191.

[3] S. Harada, M. Okamoto, T. Yatsuo, K. Adachi, K. Suzuki, S. Suzuki, K. Fukuda, and K. Arai: presented at Silicon Carbide and Related Materials (2003).

[4] J. A. Appels, and H. M. J. Vaes: in IEDM tech. Dig., 1979, p.238.

[5] S. Banerjee, K. Chatty, T. P. Chow, and R. J. Gutmann: IEEE Electron Device Lett. Vol. 22 (2001), p.209.

[6] S. Suzuki, S. Harada, T. Yatsuo, R. Kosugi, J. Senzaki, and K. Fukuda: Mater. Sci. Forum Vol. 433-436 (2003), p.753.

DOI: https://doi.org/10.4028/www.scientific.net/msf.433-436.753

[7] N. S. Saks, S. S. Mani, and A. K. Agarwal: Appl. Phys. Lett. Vol. 76 (2000), p.2250.

[8] R. Kosugi, S. Suzuki, M. Okamoto, S. Harada, J. Senzaki, and K. Fukuda: IEEE Electron Device Lett. Vol. 23 (2002), p.136.

[9] G. Y. Chung, C.C. Tin, J. R. Williams, K. McDonald, R. K. Chanana, R. A. Weller, S. T. Pantelides, L. C. Feldman, O. W. Holland, M. K. Das, and J. W. Palmour: IEEE Electron Device Lett. Vol. 22 (2001), p.176.

DOI: https://doi.org/10.1109/55.915604

[10] J. Senzaki, K. Kojima, S. Harada, R. Kosugi, S. Suzuki, T. Suzuki, and K. Fukuda: IEEE Electron Device Lett. Vol. 23 (2002), p.13.

[11] H. Yano, T. Hirao, T. Kimoto, H. Matsunami, K. Asano, and Y. Sugawara: IEEE Electron Device Lett. Vol. 20 (1999), p.611.

[12] K. Fukuda, M. Kato, K. Kojima, J. Senzaki: Appl. Phys. Lett. Vol. 84 (2004), p. (2088).

[13] S. Harada, S. Suzuki, J. Senzaki, R. Kosugi, K. Adachi, K. Fukuda, and K. Arai: IEEE Electron Device Lett. Vol. 22 (2001), p.272.

[14] Yasunori Tanaka, Kenji Fukuda, and Kazuo Arai: Appl. Phys. Lett. Vol. 84 (2004), p.1774.

[15] K. Kojima, J. Senzaki, S. Kuroda, J. Nishio, and K. Arai: Jap. J. Appl. Phys. Vol. 42 (2003), p. L637.

[16] S. Scharnholz, E. Stein von Kamienski, A. Gölz, C. Leonhard, and H. Kurz: Mater. Sci. Forum Vol. 264-268 (1998), p.1001.

DOI: https://doi.org/10.4028/www.scientific.net/msf.264-268.1001