Fundamental Limitations of SiC PVT Growth Reactors with Cylindrical Heaters

Article Preview

Abstract:

The ability to set and accurately control the desired growth conditions is crucial in order to attain high quality bulk growth of Silicon Carbide (SiC), especially when the ingot size is large (> 2” in diameter by > 2” long). However, these two aspects of SiC PVT (Physical Vapor Transport) growth technology are severely limited in “conventional” SiC PVT growth reactors with single cylindrical heaters. To overcome such shortcomings, an “alternative” furnace design with two plane resistive heaters is proposed. In order to verify benefits of this design, numerical modeling and comparative procedures have been employed. Detailed comparative analysis revealed two fundamental disadvantages of the conventional furnace design, attributed to (a) – significantly higher in magnitude and spatially nonuniform distribution of the thermal stress that consequently deteriorates structural quality of the growing SiC boule, and (b) – inability to grow long (> 2”) monocrystalline ingots of SiC. Furthermore, the potential of the alternative furnace design to overcome fundamental limitations of the conventional design is also analyzed, with particular attention being paid to the processes of source material recrystallization.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 527-529)

Pages:

15-20

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Nakamura, I. Gunjishima, S. Yamaguchi, T. Ito, A. Okamoto, H. Kondo, S. Onda and K. Takatori: Nature, Vol. 430 (2004) p.1009.

DOI: 10.1038/nature02810

Google Scholar

[2] R. M. Potter and J. H. Sattele: J. of Crystal Growth Vol. 12 (1972) p.245.

Google Scholar

[3] Yu. M. Tairov and V. F. Tsvetkov: J. of Crystal Growth Vol. 52 (1981) p.146.

Google Scholar

[4] D. Hofmann, R. Eckstein, L. Kadinski, M. Kölbl, M. Müller, St. G. Müller, E. Schmitt, A. Weber, and A. Winnacker: Mat. Res. Soc. Symp. Proc. Vol. 483 (1998) p.301.

DOI: 10.1557/proc-483-301

Google Scholar

[5] M. Selder, L. Kadinski, F. Durst, T.L. Straubinder, P.L. Wellmann, and D. Hofmann: Mater. Sci. Forum Vols. 353- 356 (2001) p.65.

DOI: 10.4028/www.scientific.net/msf.353-356.65

Google Scholar

[6] D. I. Cherednichenko, R. V. Drachev, I. I. Khlebnikov, X. Deng and T. S. Sudarshan: Mat. Res. Soc. Symp. Proc. Vol. 742 (2003) p. K2. 18. 1.

Google Scholar

[7] R. H. Ma, H. Zhang, M. Dudley, and V. Prasad: J. Cryst. Growth Vol. 258 (2003) p.318.

Google Scholar

[8] A. V. Samant and P. Pirouz : Int. J. Ref. Metals and Hard Materials Vol. 16 (1998) p.277.

Google Scholar

[9] D. S. Karpov, O. V. Bord, S. Yu. Karpov, A. I. Zhmakin, M. S. Ramm, and Yu. N. Makarov: Mater. Sci. Forum Vols. 353-356 (2001) p.37.

DOI: 10.4028/www.scientific.net/msf.353-356.37

Google Scholar

[10] K. Chourou, M. Anikin, J. M. Bluet, J. M. Dedulle, R. Madar, M. Pons, E. Blanquet, C. Bernard, P. Grosse, C. Faure, G. Basset, and Y. Grange: Materials Science and Engineering Vols. B61-62 (1999) p.82.

DOI: 10.1016/s0921-5107(98)00450-4

Google Scholar

[11] P. J. Wellmann, M. Bickermann, D. Hofmann, L. Kadinski, M. Selder, T. L. Straubinger, and A. Winnacker: J. Cryst. Growth Vol. 216 (2000) p.263.

DOI: 10.1016/s0022-0248(00)00372-9

Google Scholar

[12] H. J. Rost, D. Siche, J. Dolle, D. Schulz, and J. Wollweber: Mater. Sci. Forum Vols. 353-356 (2001) p.263.

DOI: 10.4028/www.scientific.net/msf.353-356.263

Google Scholar

[13] R. V. Drachev, D. I. Cherednichenko, I. I. Khlebnikov, Y. I. Khlebnikov and T. S. Sudarshan: Mater. Sci. Forum Vosl. 433-436 (2003) p.99.

DOI: 10.4028/www.scientific.net/msf.433-436.99

Google Scholar

[14] D.I. Cherednichenko, R.V. Drachev and T.S. Sudarshan: J. Cryst. Growth Vol. 262 (2004) p.175.

Google Scholar

[15] M. Selder, L. Kadinski, Yu. Makarov, F. Durst, P. Wellmann, T. Straubinger, D. Hofmann, S. Karpov, and M. Ramm: J. of Crystal Growth Vol. 211 (2000) p.333.

DOI: 10.1016/s0022-0248(99)00853-2

Google Scholar

[16] M. Selder, L. Kadinski, F. Durst, T. Straubinger, and D. Hofmann: Materials Science and Engineering Vols. B61- 62 (1999) p.93.

DOI: 10.1016/s0921-5107(98)00453-x

Google Scholar

[17] D. Hofmann, R. Eckstein, M. Kölbl, Y. Makarov, St.G. Müller, E. Schmitt, A. Winnacker, R. Rupp, R. Stein, and J. Völkl: J. of Crystal Growth Vol. 174 (1997) p.669.

DOI: 10.1016/s0022-0248(97)00037-7

Google Scholar

[18] Yu. M. Tairov and V. F. Tsvetkov: J. of Crystal Growth Vol. 46 (1979) p.403.

Google Scholar

[19] D. Hofmann, E. Schmitt, M. Bickermann, M. Kolbl, P. J. Wellmann, and A. Winnacker: Material Science and Engineering Vol. B61-62 (1999) p.48.

Google Scholar

[20] R.V. Drachev, G.D. Straty, D. I. Cherednichenko, I.I. Khlebnikov and T.S. Sudarshan: J. Cryst. Growth Vol. 233 (2001) p.541.

DOI: 10.1016/s0022-0248(01)01604-9

Google Scholar

[21] R.A. Stein: Physica Vol. 185B (1993) p.211.

Google Scholar

[22] E.K. Sanchez, V.D. Heydmann, D.W. Snyder, G.S. Rohrer and M. Skowronski: Mater. Sci. Forum Vols. 338-342 (2000) p.63.

Google Scholar

[23] http: /www. fluent. com.

Google Scholar

[24] M. Ponts, E. Blanquet, J.M. Dedulle, I. Garcon, R. Madar and C. Bernard: J. Electrochem. Soc. Vol. 143(11) (1996) p.3727.

DOI: 10.1149/1.1837280

Google Scholar

[25] H. J. Rost, D. Siche, J. Dolle, W. Eiserbeck, T. Muller, D. Schultz, G. Wagner: J. Woolweber, Material Science and Engineering Vols. B61-62 (1999) p.68.

Google Scholar

[26] http: /www. ansys. com.

Google Scholar