Materials Science Forum
Vol. 651
Vol. 651
Materials Science Forum
Vol. 650
Vol. 650
Materials Science Forum
Vol. 649
Vol. 649
Materials Science Forum
Vols. 645-648
Vols. 645-648
Materials Science Forum
Vol. 644
Vol. 644
Materials Science Forum
Vol. 643
Vol. 643
Materials Science Forum
Vols. 638-642
Vols. 638-642
Materials Science Forum
Vols. 636-637
Vols. 636-637
Materials Science Forum
Vol. 635
Vol. 635
Materials Science Forum
Vols. 633-634
Vols. 633-634
Materials Science Forum
Vols. 631-632
Vols. 631-632
Materials Science Forum
Vol. 630
Vol. 630
Materials Science Forum
Vols. 628-629
Vols. 628-629
Materials Science Forum Vols. 638-642
Paper Title Page
Abstract: To understand dielectric properties around the ferroelectric tetragonal (FT)/rhombohedral (FR) phase boundary in Pb1-xLax(Zr1-yTiy)O3, the crystallographic features of ferroelectric states around the boundary have been investigated by transmission electron microscopy. It was found that, when the Ti content approached to the phase boundary in the FT-phase area, a dielectric property became the relaxor behavior. The corresponding change in the crystallographic features is that the usual FT state is converted into the nanometer-sized coexisting state of the ferroelectric monoclinic (FM) and FR phases. Because the crystal structure of FR-phase regions in the coexisting state involves the R25-type rotational displacement of oxygen octahedra, the FR phase can be identified as the low-temperature ferroelectric rhombohedral phase that is present in Pb(Zr1-yTiy)O3. It is thus understood that the relaxor behavior found in Pb1-xLax(Zr1-yTiy)O3 should be associated with the presence of the nanometer-sized coexisting state that consists of two ferroelectric phases.
1737
Abstract: In this study,the (FePt)94-xCu6Nbx (x=0, 2.87, 4.52, 5.67) alloy films were prepared by co-sputtering. The effects of Nb addition content and heat treatment on the microstructure and magnetic properties of the polycrystalline FePtCu films are reported. Our previous experiments showed that the ordering temperature of the (FePt)94Cu6 films reduced to 320 °C, which is much lower than that of the FePt alloy. However, the grain growth after heat treatment limited the practical application in recording media.
By adding the Nb content in the (FePt)94Cu6 film, the grain sizes of the films can be adjusted from 50 to 18nm, even for the films annealed at temperature as high as 600°C. DSC traces of as-deposited disorder films at different heating rates, to evaluate the crystallization of the order phase, revealed that the addition of Nb enhanced the activation energy of ordering from 87 kJ/mol to 288 kJ/mol for the (FePt)94-xCu6Nbx (x=0 and 2.87, respectively) films. The reduction of the grain size and the corresponding increase in the activation energy of the Fe-Pt-Cu-Nb films might result from the precipitation of the Nb atoms around the ordering FePt phase. The (FePt)94-xCu6Nbx (x=2.87) film showed a coercive force of 13.4 kOe and the magnetization of 687 emu/cc.
1743
Abstract: Nd2Fe14B/-Fe nanocomposite permanent magnet contains the hard and soft magnetic phases, Nd2Fe14B and -Fe respectively. An exchange coupling effect exists between the two magnetic phases.
The effect of alloying element Nb on its nanostructure and properties have been studied.
Adding Nb to the alloy is effective to refine grains, a relatively small grain size causes a high intrinsic coercivity, remanence and therefore a high maximum energy product, (BH)max.
MFM (Magnetic Force Microscope) was used to observe the magnetic micro-domain structure in the nanophase alloys. The length of the magnetic contrast shows a significant dependence on the microstructure and phase constitution, and the longer length is correspond with the larger exchange coupling effect between the soft and hard magnetic phases.
1749
Abstract: The formation of Fe nanopowders by Plasma Arc discharge process and sintering behavior of Fe nanopowder has been investigated. The effect of processing parameters on the size and microstructure and their pressureless sintering behaviors have been analyzed. Also the addition effect of micron powder to nanopowder on the compaction and sintering was studied. The prepared Fe nanpowder showed nearly spherical shape with the average size of 100 nm. The surface oxide layer of nanopowder played an important role on the initial densification of the green compact. The hardness and sintered density of nano/micron bimodal powder was similar to those of pure nanopowder.
1755
Abstract: To understand a stability of the orbital-modulated (OM) state in Sr2-xRxMnO4 (R = Pr, Nd), the crystallographic features of oxide samples with 0.20 < x ≤ 0.50, prepared by the coprecipitation technique, have been investigated by transmission electron microscopy. When the Pr content x corresponding to the eg-electron concentration increased from x = 0, the OM state appeared in 0.20 < x ≤ 0.40 as a neighboring state of an orbital ordered (OO) state around x = 0.20. The interesting features are that around x = 0.44 there is a nanometer-sized coexisting state consisting of the OM and disordered tetragonal (DT) states, and that an average size of OM-state regions in the coexisting state decreases with increasing the eg-electron concentration. In addition, the so-called CE-type antiferromagnetic state found in Sr1.5La0.5MnO4 is absent in the Nd and Pr cases. This suggests that the stability of the OM state is not directly associated with charge ordering of eg electrons, but basically due to only their orbital ordering.
1760
Abstract: Carbon nanostructures are under deep investigation due their peculiar properties and possible applications. In particular, development of new methods for the synthesis of these materials and their mechanism of formation represent interesting research fields.
Arc discharge allows to produce different forms of carbon nanostructures. The parameters involved in the process, voltage, current density, type and pressure of the surrounding gas can be controlled especially for achieving high quantity of material with enhanced characteristics in terms of purity while the use of transition metal-graphite mixtures has been used to produce single wall structures. Moreover direct current (DC) and alternating current (AC) are suitable for producing carbon nano-materials, but different results can be obtained. In this work the effect of the power frequency in an AC arc discharge technique on the synthesis of carbon nanostructures is reported. Pure graphite electrodes have been arched in air in an homemade apparatus where the material can be collected directly on a cylindrical collector fixed near the arc. In order to avoid the formation of deposits under the arc a symmetrical configuration of the electrodes has been set. The production of carbon soot containing Single Wall Nanohorns (SWNH) and highly convoluted graphene sheets is optimized. The range of power frequencies 32-1000Hz has been investigated and the arcs have been ignited fixing the voltage at 28 V. The materials has been analyzed by field emission scanning electron microscope and high resolution transmission electron microscope. The microstructure of the material synthesized by this apparatus is affected by the power frequency, as the experimental results demonstrate. The samples produced at low frequency presented high amounts of single wall structures, SWNH-type. More compact structures, similar to large onion-like structures, have been found in samples synthesized at high frequency values.
1766
Abstract: Measurements of the elasticity modulus and Poisson’s ratio on nanostructured iron obtained by mechanical milling and on nanostructured copper obtained by severe plastic deformation (ECAP) have been carried out. Iron powder was severely deformed in a planetary ball milling. Powder compaction was done in a testing machine, obtaining cylinders that were compacted at temperatures between 425°C and 500°C. Commercial Cu of 99.98 wt % purity was processed at room temperature by Equal-Channel Angular Pressing (ECAP) following the route Bc. Heavy deformation was introduced in the samples after a considerable number of ECAP passes, from 1 to 16. A significant grain refinement was observed after processing the samples. The most important microstructural and mechanical changes were introduced in the first ECAP pass. Elasticity modulus and Poisson’s ratio were determined in iron and copper samples by ultrasonic measurement using an ultrasonic pulser-receiver and two transducers appropriate to the tested materials for pulse-echo sound velocity measurement in longitudinal and shear modes.
1772
Abstract: This paper highlights a systematic investigation (related to percentage addition of solvents) of finding the appropriate solvent to reduce the viscosity of the structural grade of resin (AV138M) within castable range to effectively disperse the nanofillers (Carbon Nano Powder - CNP and Multi Walled Carbon Nano Tubes - MWCNT). AV138M + HY998/CNP and AV138 + HY998/MWCNT were cast within-process degassing using a vacuum pump of capacity 4 torr. High energy sonic waves (27kHz) were used for dispersion. Morphological studies were undertaken to analyze the uniformity in dispersion of nano fillers. The cured specimens were subjected to: Resistivity measurements using a Resistivity Meter, Glass Transition Temperature (Tg) using a Differential Scanning Calorimetry (DSC) and Tensile properties using UTM. The properties have been determined for the nanocomposites with different wt % of the fillers. It has been found that for 0.6 wt % of filler (CNP / MWCNT), there is an increase in UTS of 10 times for MWCNT compared to CNP; for 1.0 wt % of the fillers, the Tg improved by 10 °C for MWCNT and by 4 °C for CNP when compared with neat resin. Both CNP and MWCNT showed drop in electrical resistivity of the neat resin; a drop to the extent of 10 3 has been achieved with 1 wt % MWCNT and the same was 2 wt % in case of CNP.
1778
Abstract: We have developed a bottom-up growth technology for nanostructures from a Cu surface by Ar ion irradiation. Cu2O conical nano-/micro-protrusions have been nucleated and grown from the surface of a preoxidized Cu plate by Ar ion irradiation in low vacuum. In this study, the growth direction or preferred orientation of the protrusions was analysed using glancing angle X-ray diffraction (GAXRD) analysis and an X-ray diffraction pole figure (XRD-PF) measurement. The GAXRD patterns showed that the main phase of the product obtained by Ar irradiation was Cu2O, shown as the highest peak of Cu2O (111), and CuO was additionally formed. The intensity ratio of Cu2O (110) to Cu2O (111) increased as the X-ray incident angle decreased from 10.0 to 0.5 deg, which indicated that the basal plane of the protrusions including the substrate was (110). Additionally, the XRD-PF {011}<001> 3-D plots showed the <110> preferred orientation of the product. These results explain that the growth direction or preferred orientation of the Cu2O protrusions is mainly <110>. The growth direction of the protrusions was separated and confirmed as <110> by checking the electron backscatter diffraction pattern (EBSP) of each protrusion.
1784
Abstract: Mechanically milled austenitic stainless steel powder is applied to hot roll sintering (HRS) process. Microstructure and mechanical properties of the HRS material are investigated in detail. The mechanically milled powder has a bimodal structure with a severely deformed powder surface domain which is named as “Shell”, and an inner domain which is named as “Core”. The shell and core microstructure in the milled powder can be maintained even after sintering. As the result, microstructure of the HRS materials consists of a shell and core bimodal microstructure. Because severe plastic deformation mainly concentrates to the shell domain, a nano grain structure forms in the shell, while a coarse (meso) grain structure forms in the core. Such a nano / meso harmonic structured material demonstrates not only superior strength but also a large elongation. The mechanical properties of the HRS materials are strongly influenced by the nano / meso harmonic microstructure, such as grain size of the shell / core and the shell volume fraction. The shell has role of strength and the core has role of ductility. Thus, the nano / meso harmonic microstructure has been proved to be very effective to improve mechanical properties of structure materials.
1790