Elastic Properties of Dense Organosilicate Glasses Dependent on the C/Si Ratio

Article Preview

Abstract:

Organosilicate glasses (OSG) are of great technological interest as low-k dielectrics. We use ab initio simulations to analyze the influence of the C/Si ratio in OSG on the density and elastic properties of pore-free material to gain a detailed understanding of the origins of these properties in this class of materials. We find that the addition of carbon to amorphous silica leads to a stiffening of the material by removing the bending degrees of freedom of Si-O-Si bonds. This transition in mechanisms of stiffness, leads to a distinctly nonlinear behavior of the bulk and elastic modulus over the C/Si ratio. Experimental results do not contradict our findings, however dominant pore effects impede conclusive comparison.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 645-648)

Pages:

267-270

Citation:

Online since:

April 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Aradi, B. Hourahine, and Th. Frauenheim. DFTB+, a sparse matrix-based implementation of the DFTB method. J. Phys. Chem. A, 111: 5678, (2007).

DOI: 10.1021/jp070186p

Google Scholar

[2] Th. Frauenheim, G. Seifert, M. Elstner, Z. Hajnal, G. Jungnickel, D. Porezag, S. Suhai, and R. Scholz. A self-consistent charge density-functional based tight-binding method for predictive materials simulations in physics, chemistry and biology. phys. stat. sol. (b), 217: 41, (2000).

DOI: 10.1002/(sici)1521-3951(200001)217:1<41::aid-pssb41>3.0.co;2-v

Google Scholar

[3] M. Z. Bazant, E. Kaxiras, and J. F. Justo. The environment-dependent interatomic potential applied to silicon disordered structures and phase transitions. Mat. Res. Soc. Proc., 491: 339, (1997).

DOI: 10.1557/proc-491-339

Google Scholar

[4] Martin Z. Bazant, Efthimios Kaxiras, and J. F. Justo. Environment-dependent interatomic potential for bulk silicon. Phys. Rev. B, 56(14): 8542-8552, Oct (1997).

DOI: 10.1103/physrevb.56.8542

Google Scholar

[5] Ren´ee M. Van Ginhoven, Hannes J´onsson, and L. Ren´e Corrales. Silica glass structure generation for ab initio calculation using small samples of amorphous silica. Phys. Rev. B, 71: 024208, (2005).

DOI: 10.1103/physrevb.71.024208

Google Scholar

[6] Francis Birch. Finite elastic strain of cubic crystals. Phys. Rev., 71(11): 809-824, Jun (1947).

DOI: 10.1103/physrev.71.809

Google Scholar

[7] Youbo Lin, Yong Xiang, Ting Y. Tsui, and Joost J. Vlassak. PECVD Low-Permittivity Organosilicate Glass Coatings: Adhesion, Fracture and Mechanical Properties. Acta Materialia, 56(17): 4932, (2008).

DOI: 10.1016/j.actamat.2008.06.007

Google Scholar