Epitaxial Graphene Growth Studied by Low-Energy Electron Microscopy and First-Principles

Article Preview

Abstract:

Epitaxial graphene growth on SiC is investigated using low-energy electron microscopy (LEEM) and first-principles calculations. LEEM is one of the most powerful tools to identify the thickness of graphene on SiC with a good spatial resolution. With the help of such LEEM, the thickness-dependent physical properties are identified by various experiments. It is shown that epitaxial graphene sheets continue even over steps of the substrate, and that a new graphene sheet often grows from step edges while the surface morphology changes drastically. Furthermore, the first-principles calculations also show the energetics of the epitaxial graphene growth on SiC. It is expected that the fine control of epitaxial graphene growth on SiC will open the way to novel graphene devices in the post-scaling era of the ultra-large-scale integrations (ULSI).

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 645-648)

Pages:

597-602

Citation:

Online since:

April 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov: Science Vol. 306 (2004), p.666.

DOI: 10.1126/science.1102896

Google Scholar

[2] A. K. Geim: Science Vol. 324 (2009), p.1530.

Google Scholar

[3] International Technology Roadmap for Semiconductors (ITRS), http: /www. itrs. net.

Google Scholar

[4] C. Berger, Z. M. Song, T. B. Li, X. B. Li, A. Y. Ogbazghi, R. Feng, Z. T. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer: J. Phys. Chem. B Vol. 108 (2004), p.19912.

DOI: 10.1021/jp040650f

Google Scholar

[5] T. Ohta, A. Bostwick, Th. Seyller, K. Horn, and E. Rotenberg: Science Vol. 313 (2006), p.951.

Google Scholar

[6] A. Fissel: Phys. Rep. Vol. 379 (2003), p.149.

Google Scholar

[7] J. Jobst, D. Waldmann, F. Speck, R. Hirner, D. K. Maude, Th. Seyller, and H. B. Weber: arXiv: 0908. 1900 [cond-mat. mes-hall].

Google Scholar

[8] T. Shen, J. J. Gu, M. Xu, Y. Q. Wu, M. L. Bolen, M. A. Capano, L.W. Engel, and P.D. Ye: arXiv: 0908. 3822 [cond-mat. mes-hall].

Google Scholar

[9] X. Wu, Y. Hu, M. Ruan, N. K. Madiomanana, J. Hankinson, M. Sprinkle, C. Berger, and W. A. de Heer: arXiv: 0908. 4112 [cond-mat. mes-hall].

Google Scholar

[10] H. Hibino, H. Kageshima, F. Maeda, M. Nagase, Y. Kobayashi, and H. Yamaguchi: Phys. Rev. B Vol. 77 (2008), p.075413.

Google Scholar

[11] H. Hibino, H. Kageshima, F. Maeda, M. Nagase, Y. Kobayashi, Y. Kobayashi, and H. Yamaguchi: e-J. Surf. Sci. Nanotechnol. Vol. 6 (2008), p.107.

DOI: 10.1380/ejssnt.2008.107

Google Scholar

[12] H. Hibino, H. Kageshima, and M. Nagase: J. Phys. D, in press.

Google Scholar

[13] M. Nagase, H. Hibino, H. Kageshima, and H. Yamaguchi: J. Phys. Conf. Ser. Vol. 100 (2008), p.052006.

Google Scholar

[14] M. Nagase, H. Hibino, H. Kageshima, and H. Yamaguchi: Nanotechnol. Vol. 19 (2008), p.495701.

Google Scholar

[15] H. Hibino, H. Kageshima, M. Kotsugi, F. Maeda, F. -Z. Guo, and Y. Watanabe: Phys. Rev. B Vol. 79 (2009), p.125437.

Google Scholar

[16] M. Nagase, H. Hibino, H. Kageshima, and H. Yamaguchi: Nanotechnol. (2009), in press.

Google Scholar

[17] H. Hibino, S. Mizuno, H. Kageshima, M. Nagase, and H. Yamaguchi: Phys. Rev. B Vol. 80 (2009), p.085406.

Google Scholar

[18] H. Kageshima, H. Hibino, M. Nagase, and H. Yamaguchi: Appl. Phys. Exp. Vol. 2 (2009), p.065502.

Google Scholar

[19] A. Mattausch and O. Pankratov: Phys. Rev. Lett. Vol. 99 (2007), p.076802.

Google Scholar

[20] M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe: J. Phys. Soc. Jpn. Vol. 65 (1996), p. (1920).

Google Scholar

[21] S. Okada, M. Igami, K. Nakada, and A. Oshiyama: Phys. Rev. B Vol. 62 (2000), p.9896.

Google Scholar