Epitaxial Graphene Growth Studied by Low-Energy Electron Microscopy and First-Principles

Abstract:

Article Preview

Epitaxial graphene growth on SiC is investigated using low-energy electron microscopy (LEEM) and first-principles calculations. LEEM is one of the most powerful tools to identify the thickness of graphene on SiC with a good spatial resolution. With the help of such LEEM, the thickness-dependent physical properties are identified by various experiments. It is shown that epitaxial graphene sheets continue even over steps of the substrate, and that a new graphene sheet often grows from step edges while the surface morphology changes drastically. Furthermore, the first-principles calculations also show the energetics of the epitaxial graphene growth on SiC. It is expected that the fine control of epitaxial graphene growth on SiC will open the way to novel graphene devices in the post-scaling era of the ultra-large-scale integrations (ULSI).

Info:

Periodical:

Materials Science Forum (Volumes 645-648)

Edited by:

Anton J. Bauer, Peter Friedrichs, Michael Krieger, Gerhard Pensl, Roland Rupp and Thomas Seyller

Pages:

597-602

DOI:

10.4028/www.scientific.net/MSF.645-648.597

Citation:

H. Kageshima et al., "Epitaxial Graphene Growth Studied by Low-Energy Electron Microscopy and First-Principles", Materials Science Forum, Vols. 645-648, pp. 597-602, 2010

Online since:

April 2010

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.