Carrier Dynamics in Hetero- and Homo-Epitaxially Sublimation Grown 3C-SiC Layers

Article Preview

Abstract:

We investigated non-equilibrium carrier dynamics in ~20μm thick 3C-SiC layers, grown by sublimation epitaxy directly on 6H-SiC substrate or buffered by a 3C seed layer. Differential transmission and light-induced transient grating techniques were applied to determine the ambipolar diffusion coefficient, carrier lifetime, and thermal activation energy of defects. The temperature dependences of ambipolar mobility and lifetime in 80-700 K range revealed the carrier scattering processes as well the impact of defects on the recombination rate, thus indicating slightly improved photoelectrical parameters of the homoepitaxially grown 3C layer. The determined thermal activation energies of 35 and 57 meV were attributed to the nitrogen impurity.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 679-680)

Pages:

161-164

Citation:

Online since:

March 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Friedrichs: phys. stat. sol. (b) 245, No. 7, (2008), p.1232.

Google Scholar

[2] K. Lee, G Pensl, M. Soueidan, G. Ferro and Y. Monteil: Jpn. J. Appl. Phys. 45, (2006), p.6823.

Google Scholar

[3] A.N. Andreev, N. Yu. Smirnova, A.S. Tregubova, M.P. Shcheglov and V.E. Chelnokov: Semiconductors 31(3) (1997), p.232.

Google Scholar

[4] A. Fissel: J. Cryst. Growth 212 (2000), p.438.

Google Scholar

[5] M. Soueidan, G. Ferro, O. Kim-Hak, F. Cauwet and B. Nsouli: Crystal Growth & Design 8(3) (2008), p.1044.

DOI: 10.1021/cg070499+

Google Scholar

[6] M. Beshkova, J. Lorenzzi, N. Jegenyes, R. Vasiliauskas, J. Birch, M. Syväjärvi, G. Ferro and R. Yakimova, Proc. HeteroSiC-WASMPE, (2009) p.21.

DOI: 10.4028/www.scientific.net/msf.645-648.183

Google Scholar

[7] V. Grivickas, G. Manolis, K. Gulbinas, K. Jarašiūnas and M. Kato: Appl. Phys. Letters 95, (2009), p.242110.

DOI: 10.1063/1.3273382

Google Scholar

[8] A. Kadys, P. Ščajev, G. Manolis, V. Gudelis, K. Jarašiūnas, P. Abramov, S. Lebedev and A. Lebedev: Mat Sc. Forum Vols 645-648, (2010), p.219.

DOI: 10.4028/www.scientific.net/msf.645-648.219

Google Scholar

[9] P. Ščajev, K. Jarašiūnas, A. Kadys, J. Storasta, P. L. Abramov, S. P Lebedev, and A.A. Lebedev: to be published in Proc. EMRS-2010, session F.

Google Scholar

[10] H. Matsuura, H. Nagasawa, K. Yagi and T. Kawahara: J. Appl. Phys. 96, (2004), p.7346.

Google Scholar

[11] B. Segall, S.A. Alterovitz, E.J. Haugland and L.G. Matus: Appl. Phys. Lett. 49 (1986), p.584.

Google Scholar

[12] Information on http: /www. ioffe. ru/SVA/NSM/Semicond/SiC/impurities. html.

Google Scholar

[13] G. Zoulis and J.W. Sun, private communication.

Google Scholar

[14] P.Y. Yu and M. Cardona: Fundamentals of Semiconductors (Springer-Verlag, Germany 2001).

Google Scholar