Design and Yield of 9 kV Unipolar Normally-ON Vertical-Channel SiC JFETs

Article Preview

Abstract:

Normally-ON 9.1 kV (at 0.1 mA/cm2), 1.52 x 10-3 cm2 active-area vertical-channel SiC JFETs (VJFETs), were fabricated at a 52% yield with no epitaxial regrowth and a three-step junction-termination-extension edge termination, which is connected to the gate bus through an ion-implanted sloped sidewall. The VJFETs exhibit low gate-to-source leakage currents of less than 1 nA up to VGS = -60 V, and sharp onsets of breakdown occurring at VGS ~ -80 V. The gate-to-source and gate-to-drain diodes turn on at 2.75 V, with the latter diode exhibiting higher resistance due to the thick epitaxial drift layer. To realize unipolar operation with low on-state resistance, the VJFET is designed very normally-ON which minimizes the channel resistance contribution. Consequently, threshold voltages are in the -3 V to -4.5 V range and transconductance is relatively low at < 0.36 mS. At a gate bias of 0 V, the VJFETs output a drain current of 73 mA with a forward drain voltage drop of 5 V (240 W/cm2), a specific on-state resistance of 104 mΩ-cm2, and a current gain of ID/IG = 6.4 x 109. Thus, these VJFETs are capable of efficient power switching, i.e., high current-gain voltage-controlled operation at a low unipolar resistance.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 679-680)

Pages:

617-620

Citation:

Online since:

March 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. H. Ryu, S. Das, S. Haney, A. Agarwal, A. Lelis, B. Geil, and C. Scozzie: Mat. Sci. Forum Vol. 615-617 (2009), p.743.

DOI: 10.4028/www.scientific.net/msf.615-617.743

Google Scholar

[2] V. Veliadis, H. Hearne, T. McNutt, M. Snook, P. Potyraj, and C. Scozzie: Mat. Sci. Forum Vol. 615-617 (2009), p.711.

DOI: 10.4028/www.scientific.net/msf.615-617.711

Google Scholar

[3] J. H. Zhao, P. Alexandrov, J. Zhang, and X. Li: IEEE Elec. Dev. Lett. Vol. 25 (2004), p.474.

Google Scholar

[4] B. J. Baliga: Electr. Lett. Vol. 16 (1980), p.300.

Google Scholar

[5] V. Veliadis, H. Hearne, E. J. Stewart, M. Snook, T. McNutt, R. Howell, A. Lelis, and C. Scozzie: IEEE Electron Dev. Lett. Vol. 30 (2009), p.736.

DOI: 10.1109/led.2009.2021491

Google Scholar

[6] V. Veliadis, E. J. Stewart, H. Hearne, R. Howell, A. Lelis, and C. Scozzie: IEEE Electr. Dev. Lett. Vol. 31 (2010), p.470.

Google Scholar

[7] V. Veliadis, T. McNutt, M. McCoy, H. Hearne, P. Potyraj, and C. Scozzie: International Journal of Power Management Electronics Vol. 2008 (2008), Article ID 523721.

DOI: 10.1155/2008/523721

Google Scholar

[8] E J. Stewart, M. J. McCoy, T. R. McNutt, H. C. Hearne, A. P. Walker, S. D. Van Campen, G. M. Bates, S. Leslie, G. C. DeSalvo, and R. C. Clarke: Proceedings of the 19th International Symposium on Power Semiconductor Devices & Ics (2007), p.85.

DOI: 10.1109/ispsd.2007.4294938

Google Scholar

[9] V. Veliadis, H. Hearne, E. J. Stewart, R. Howell, A. Lelis, and C. Scozzie: Mat. Sci. Forum Vol. 645-648 (2010), p.929.

DOI: 10.4028/www.scientific.net/msf.645-648.929

Google Scholar

[10] Y. Li, P. Alexandrov, and J. H. Zhao: IEEE Trans. on Electr. Dev. Vol. 55 (2008), p.1880.

Google Scholar

[11] K. Vassilevski, K. Zekentes, A. Zorenko, L. P. Romanov: IEEE Elec. Dev. Lett. Vol. 21 (2000), p.485.

Google Scholar

[12] V. Veliadis, H. Hearne, T. McNutt, M. Snook, P. Potyraj, and C. Scozzie: Mat. Sci. Forum Vol. 615-617 (2009), p.711.

DOI: 10.4028/www.scientific.net/msf.615-617.711

Google Scholar