Enhanced Current Gain (>250) in 4H-SiC Bipolar Junction Transistors by a Deep-Level-Reduction Process

Article Preview

Abstract:

We demonstrate 4H-SiC bipolar junction transistors (BJTs) with an enhanced current gain over 250. High current gain was achieved by utilizing optimized device geometry as well as optimized surface passivation, continuous epitaxial growth of the emitter-base junction, combined with an intentional deep-level-reduction process based on thermal oxidation to improve the lifetime in p-SiC base. We achieved a maximum current gain (β) of 257 at room temperature and 127 at 250°C for 4H-SiC BJTs fabricated on the (0001)Si-face. The gain of 257 is twice as large as the previous record gain. We also demonstrate BJTs on the (000-1)C-face that showed the highest β of 439 among the SiC BJTs ever reported.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 717-720)

Pages:

1117-1122

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Luo, L. Fursin, and J.H. Zhao, Electronics Letters, 36 1496 (2000).

Google Scholar

[2] S.-H. Ryu, A. K. Agarwal, R. Singh, and J. W. Palmour, IEEE Electron Device Lett., 22 124 (2001).

Google Scholar

[3] M. Domeij, A. Lindgren, C. Zaring, A. Konstantinov, K. Gumaelius, H. Grenell, I. Keri, J.-O. Svedberg, and M. Reimark, Mater. Sci. Forum, 679-680 686 (2011)

DOI: 10.4028/www.scientific.net/msf.679-680.686

Google Scholar

[4] M. Domeij, C. Zaring, A.O. Konstantinov, M. Nawaz, J.-O. Svedberg, K. Gumaelius, I. Keri, A. Lindgren, B. Hammarlund, M. Östling, and M. Reimark, Mater. Sci. Forum, 645-648 1033 (2010).

DOI: 10.4028/www.scientific.net/msf.645-648.1033

Google Scholar

[5] Y. Gao, A. Q. Huang, A. K. Agarwal, Q. Zhang, IEEE Electron Dev. Lett., 55 1887 (2008).

Google Scholar

[6] A. Konstantinov, M. Domeij, C. Zaring, I. Keri, J.-O. Svedberg, K.Gumaelius, M. Östling and M. Reimark, Mater. Sci. Forum, 645-648 1057 (2010).

DOI: 10.4028/www.scientific.net/msf.645-648.1057

Google Scholar

[7] Q. Zhang, A. Agarwal, A. Burk, B. Geil, and C. Scozzie, Solid-State Electronics, 52 1008-1010 (2008).

DOI: 10.1016/j.sse.2008.03.004

Google Scholar

[8] K. Nonaka, A. Horiuchi, Y. Negoro, K. Iwanaga, S. Yokoyama, H. Hashimoto, M. Sato, Y. Maeyama, M. Shimizu, and H. Iwakuro, Mater. Sci. Forum, 615-617, 821 (2009).

DOI: 10.4028/www.scientific.net/msf.615-617.821

Google Scholar

[9] H. Miyake, T. Kimoto, and J. Suda, IEEE Electron Device Lett., 32, 285 (2011).

Google Scholar

[10] C.-F. Huang and J. A. Cooper, IEEE Electron Device Lett., 24 396 (2003).

Google Scholar

[11] J. Zhang, Y. Luo, P. Alexandrov, L. Fursin, and J. H. Zhao, IEEE Electron Dev. Lett., 24, 327 (2003).

Google Scholar

[12] M. Domeij, H.-S. Lee, E. Danielsson, C.-M. Zetterling, M. Östling, and A. Schöner, IEEE Electron Device Lett., 26, 743 (2005).

Google Scholar

[13] H.-S. Lee, M. Domeij, C.-M. Zetterling, M. Östling, F. Allerstam, and E. Ö. Sveinbjörnsson, IEEE Electron Device Lett., 28 1007 (2007).

Google Scholar

[14] R. Ghandi, B. Buono, M. Domeij, R. Esteve, A. Schöner, J. Han, S. Dimitrijev, S. A. Reshanov, C.-M. Zetterling, and M. Östling, IEEE Trans. Electron Devices, 58, 259 (2011).

DOI: 10.1109/ted.2010.2082712

Google Scholar

[15] S. Krishnaswami, A. Agarwal, S.-H. Ryu, C. Capell, J. Richmond, J. Palmour, S. Balachandran, T. P. Chow, S. Bayne, B. Geil, K. Jones, and C. Scozzie, IEEE Electron Device Lett. 26, 175 (2005).

DOI: 10.1109/led.2004.842731

Google Scholar

[16] T. Hiyoshi and T. Kimoto, Appl. Phys. Express, 2 041101 (2009).

Google Scholar

[17] T. Hayashi, K. Asano, J. Suda, and T. Kimoto, J. Appl. Phys., 109 014505 (2011).

Google Scholar

[18] M. Noborio, J. Suda, S. Beljakowa, M. Krieger, and T. Kimoto, Phys. Stat. Sol. (a), 206 2374 (2009).

DOI: 10.1002/pssa.200925247

Google Scholar

[19] K. Danno, and T. Kimoto, J. Appl. Phys., 101 103704 (2007).

Google Scholar

[20] K. Kawahara, J. Suda, G. Pensl, and T. Kimoto, J. Appl. Phys., 108 033706 (2010).

Google Scholar

[21] H. Yano, H. Nakao, H. Mikami, T. Hatayama, Y. Uraoka, and T. Fuyuki, Appl. Phys. Lett., 90 042102 (2007).

DOI: 10.1063/1.2434157

Google Scholar

[22] R. Ghandi, B. Buono, M. Domeij, R. Esteve, A. Schöner, J. Han, S. Dimitrijev, S. A. Reshanov, C.-M. Zetterling, and M. Östling, IEEE Trans. Electron Devices, 58 259 (2011).

DOI: 10.1109/ted.2010.2082712

Google Scholar

[23] B. Buono, R. Ghandi, M. Domeij, B. G. Malm, C.-M. Zetterling, and M. Ostling, IEEE Trans. Electron Devices, 57 704 (2010).

DOI: 10.1109/ted.2009.2039099

Google Scholar

[24] P. Jamet, S. Dmitrijev, and P. Tanner, J. Appl. Phys., 90 5058 (2001).

Google Scholar

[25] L.A. Lipkin, M.K. Das, and J.W. Palmour, Mat. Sci. Forum, 389-393 985 (2002).

Google Scholar

[26] M. Noborio, J. Suda, and T. Kimoto, IEEE Trans. Electron Devices, 56 1953 (2009).

Google Scholar

[27] T. Kimoto, Y. Kanzaki, M. Noborio, H. Kawano, and H. Matsunami, Jpn. J. Appl. Phys., 44 1213 (2005).

Google Scholar