Analysis of Growth Velocity of SiС Growth by the Physical Vapor Transport Method

Article Preview

Abstract:

Crystal growth velocity of SiC in a process of physical vapor transport was studied on the basis of numerical calculation including compressible effect, convection and buoyancy effects, flow coupling between argon gas and species, and the Stefan effect. Calculation in 2D configuration was performed to clarify the effect of pressure on growth velocity. The results revealed that the origin of diffusion resistance reported so far was the effect of convection of argon gas and chemical species.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 717-720)

Pages:

25-28

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X. L. Wang, D. Cai and H. Zhang, Int. J. Heat Mass Transfer 50 (2007) 1221.

Google Scholar

[2] X. L. Wang, D. Cai and H. Zhang, J. Crystal Growth 305 (2007) 122.

Google Scholar

[3] A. S. Segal, A. N. Vorobi and H. Zhang, J. Crystal Growth 305 (2007) 122.

Google Scholar

[4] R. A. Stein, P. Lanig and S. Leibenzeder, J. Crystal Growth 131 (1993) 71.

Google Scholar

[5] A. A. Maltsev, A. Yu. Maksimov and N. K. Yushin, Inst. Phys. Conf. Ser. 142 (1996) 41.

Google Scholar

[6] M. Kanaya, J. Takahashi, Yu. Fujiwara and A. Moritani, Appl. Phys. Lett. 58 (1991) 56.

Google Scholar

[7] I. Markov and R. Kaischew, Thin Solid Films 32 (1976) 163.

Google Scholar

[8] B. Gao, X. J. Chen, S. Nakano, S. Nishizawa and K. Kakimoto, J. Crystal Growth 312 (2010) 3349.

Google Scholar

[9] X. J. Chen, L. J. Liu, H. Tezuka, Y. Usuki and K. Kakimoto, Cryst. Res. Technol. 42, No. 10 (2007) 971.

Google Scholar

[10] J. S. Shun, K. H. Chen and Y. Choi, J. Comput. Phys. 106 (1993) 306.

Google Scholar

[11] K. Bottcher and D. Schulz, J. Crystal Growth 237–239 (2002) 1196.

Google Scholar

[12] M. S. Ramm, E. N. Mokhov, S. E. Demina, M. G. Ramm, A. D. Roenkov, Yu. A. Vodakov, A. S. Segal, A. N. Vorob'ev, S. Yu. Karpov, A. V. Kulik and Yu. N. Makarov, Mater. Sci. Eng. B 61-62 (1999) 107.

DOI: 10.1016/s0921-5107(98)00456-5

Google Scholar

[13] A. S. Segal, A. N. Vorob'ev, S. Yu. Karpov, Yu. N. Makarov, E. N. Mokhov, M. G. Ramm, M. S. Ramm, A. D. Roenkov, Yu. A. Vodakov and A.I. Zhmakin, Mater. Sci. Eng. B 61-62 (1999) 40.

DOI: 10.1016/s0921-5107(98)00441-3

Google Scholar

[14] S. Nishizawa, private communication.

Google Scholar

[15] S. Yu Karpov, Yu. N. Makarov and M. S. Ramm, J. Crystal Growth 169 (1996) 491.

Google Scholar

[16] J. Drowart and G. de Maria, J. Chem. Phys. 29 (1958) 1015.

Google Scholar

[17] S. K. Lilov, Mater. Sci. Eng. B 21 (1993) 65.

Google Scholar

[18] B. Gao, X.J. Chen, S. Nakano, S. Nishizawa and K. Kakimoto, J. Crystal Growth 312 (2010) 3349.

Google Scholar

[19] K. Kakimoto, B. Gao, T. Shiramomo, S. Nakano and Shin-ichi Nishizawa, J. Crystal Growth 324 (2011) 78.

Google Scholar