Photoluminescence Study of the Driving Force for Stacking Fault Expansion in 4H-SiC

Article Preview

Abstract:

We investigated expansion velocities of Shockley stacking faults (SSFs) in 4H-silicon carbide under laser illumination using photoluminescence methods. The experiments showed that the velocity of SSF expansion or the glide velocity of SSF-bounding 30°-Si(g) partial dislocations (PD) is supralinearly dependent on the excitation intensity. We estimated sample temperature by analyzing the broadening of band-edge emission and concluded that the lattice heating by laser illumination is not the cause of the enhanced dislocation glide. The supralinear dependence can be accounted for by a photo-induced sign reversal of the effective formation energy of SSF acting as the driving force of SSF expansion under the illumination.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 717-720)

Pages:

395-398

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Lendenmann, F. Dahlquist, N. Johansson, R. Söderholm, P. A. Nilsson, J. P. Bergman, and P. Skytt: Mater. Sci. Forum Vol. 353-356 (2001), p.727.

DOI: 10.4028/www.scientific.net/msf.353-356.727

Google Scholar

[2] J. P. Bergman, H. Lenenmann, P. Å. Nilsson, U. Lindefelt, and P. Skytt: Mater. Sci. Forum Vols. 353-356 (2001), p.299.

Google Scholar

[3] A. Galeckas, J. Linnros, and P. Pirouz: Phys. Rev. Lett. Vol. 96 (2006), 025502.

Google Scholar

[4] N. Hoshino, M. Tajima, M. Naitoh, E. Okuno, and S. Onda: Mater. Sci. Forum Vols. 600-603 (2009), p.349.

Google Scholar

[5] K. Maeda and S. Takeuchi, Dislocations in Solids, Vol. 10, North-Holland, 1996. p.444.

Google Scholar

[6] M. Skowronski and S. Ha: J. Appl. Phys. Vol. 99 (2006), p.011101.

Google Scholar

[7] T. Miyanagi, H. Tsuchida, I. Kamata,T. Nakamura, K. Nakayama, R. Ishii, and Y. Sugawara: Appl. Phys. Lett. Vol. 89 (2006), p.062104.

DOI: 10.1063/1.2234740

Google Scholar

[8] J. D. Caldwell, O. J. Glembocki, R. E. Stahlbush, and K. D. Hobart: J. Electron. Mater. Vol. 37 (2008), p.699.

Google Scholar

[9] Y. Shishkin, R. P. Devaty, and W. J. Choyke: Mater. Sci. Forum Vol. 383-342 (2000), p.679.

Google Scholar

[10] A. Itoh, T. Kimoto, and H. Matsunami: Jpn. J. Appl. Phys. Vol. 35 (1996), p.4373.

Google Scholar

[11] I. Pelant, J. Dian, J. Matoušková, J. Valenta, J. Hála, M. Ambrož, M. Vácha, V. Kohlová, K. Vojtěchovský, and K. Kašlík: J. Appl. Phys. Vol. 73 (2006), p.3477.

DOI: 10.1063/1.352952

Google Scholar

[12] H. Idrissi, G. Regula, M. Lancin, J. Douin, and B. Pichaud: Phys. Stat. Sol. (c) Vol. 6 (2005), p.1998.

DOI: 10.1002/pssc.200460544

Google Scholar

[13] W. R. L. Lambrecht and M. S. Miao: Phys. Rev. B. Vol. 73 (2006), p.155312.

Google Scholar

[14] K. Maeda, Handbook of Reliability and Materials Issues of Semiconductor Optical and Electronic Devices, ed. by O. Ueda and S. Pearton, Springer, 2012, to be published.

Google Scholar