A Proposal to Apply Effective Acceptor Level for Representing Increased Ionization Ratio of Mg Acceptors in Extrinsically Photon-Recycled GaN

Article Preview

Abstract:

An effective acceptor level (EAeff) for representing the increased ionization ratio in extrinsically photon-recycled p-type GaN is proposed. EAeff at 300 K in the range of 0.1360.145 eV is found to reproduce current/voltage characteristics of transmission-line-model patterns formed with GaN p-n junction epitaxial layers and electrode spacing of 320 μm when the p-n diode current flowing through an 80×100-μm electrode is 90 mA. When EAeff is decreased from 0.160 eV to 0.145 eV, the on-resistance of 18×100-μm GaN bipolar transistors is predicted to be reduced by more than 50%.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 778-780)

Pages:

1189-1192

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. M. Ozbeck and B. J. Baliga: IEEE Electron Device Lett., Vol. 32, (2011), p.300.

Google Scholar

[2] S. S. Park, I. W. Park, and S. H. Chob: Jpn. J. Appl. Phys., Vol. 39 (2000), p.1141.

Google Scholar

[3] K. Motoki, T. Okahisa, N. Matsumoto, M. Matsushima, H. Kimura, H. Kasai, K. Takemoto, K. Uematsu, T. Hirano, M. Nakayama, S. Nakahata, M. Ueno, D. Hara, Y. Kumagai, A. Koukitsu, and H. Seki: Jpn. J. Appl. Phys., Vol. 40 (2001), p. L140.

DOI: 10.1143/jjap.40.l140

Google Scholar

[4] T. Paskova, D. A. Hanser, and K. R. Evans: Proc. IEEE, Vol. 98 (2010), p.1324.

Google Scholar

[5] T. Yoshida, Y. Oshima, T. Eri, K. Ikeda, S. Yamamoto, K. Watanabe, M. Shibata, and T. Mishima: J. Cryst. Growth, Vol. 310 (2008), p.5.

Google Scholar

[6] Y. Yoshizumi, S. Hashimoto, T. Tanabe, and M. Kiyama: J. Cryst. Growth, Vol. 298 (2007), p.875.

Google Scholar

[7] J. B. Lim, D. Yoo, J. -H. Ryou, W. Lee, S. -C. Shen, and R. D. Dupui: Electron. Lett., Vol. 42 (2006), p.1313.

Google Scholar

[8] Y. Hatakeyama, K. Nomoto, N. Kaneda, T. Kawano, T. Mishima, and T. Nakamura: IEEE Electron Device Lett., Vol. 32 (2011), p.1674.

DOI: 10.1109/led.2011.2167125

Google Scholar

[9] K. Nomoto, T. Nakamura, N. Kaneda, T. Kawano, T. Tsuchiya, and T. Mishima: Int. Conf. Silicon Carbide and Related Materials, 2011, We-P-76.

Google Scholar

[10] Y. Hatakeyama, K. Nomoto, A. Terano, N. Kaneda, T. Tsuchiya, T. Mishima, and T. Nakamura: Jpn. J. Appl. Phys. Vol. 52 (2013), 028007.

DOI: 10.7567/jjap.52.028007

Google Scholar

[11] D. Disney, H. Nie, A. Edwards, D. Bour, H. Shah, and I. C. Kizilyalli: Intl. Symp. Power Semiconductor Devices & ICs, 2013, p.59.

DOI: 10.1109/ispsd.2013.6694455

Google Scholar

[12] K. Mochizuki, T. Mishima, K. Nomoto, A. Terano, and T. Nakamura: Jpn. J. Appl. Phys. Vol. 52 (2013) 08JN10.

Google Scholar

[13] K. Mochizuki, K. Nomoto, Y. Hatakeyama, H. Katayose, T. Mishima, N. Kaneda, T. Tsuchiya, A. Terano, T. Ishigaki, T. Tsuchiya, R. Tsuchiya, and T. Nakamura: Int. Electron Devices Meetings, 2011, p.26. 3.

DOI: 10.1109/iedm.2011.6131617

Google Scholar

[14] K. Mochizuki, T. Mishima, A. Terano, N. Kaneda, T. Ishigaki, and T. Tsuchiya: IEEE Trans. Electron Devices, Vol. 58 (2011), p. (1979).

DOI: 10.1109/ted.2011.2145380

Google Scholar

[15] K. Mochizuki, K. Nomoto, Y. Hatakeyama, H. Katayose, T. Mishima, N. Kaneda, T. Tsuchiya, A. Terano, T. Ishigaki, T. Tsuchiya, R. Tsuchiya, and T. Nakamura: IEEE Trans. Electron Devices, Vol. 59 (2012), p.1091.

DOI: 10.1109/ted.2012.2185241

Google Scholar

[16] B. J. Baliga: Fundamentals of Power Semiconductor Devices (Springer, Heidelberg, 2008), p.565.

Google Scholar

[17] H. Xing, P. M. Chayarkar, S. Keller, S. P. DenBaars, and U. K. Mishra: IEEE Electron Device Lett., Vol. 24 (2003), p.141.

Google Scholar

[18] S. M. Sze and K. K. Ng: Physics of Semiconductor Devices 3rd Ed. (John Wiley & Sons, New Jersey, 2007) p.256.

Google Scholar

[19] Information on http: /www. silvaco. com/products/device_simulation/atlas. htm.

Google Scholar

[20] K. Mochizuki, T. Mishima, Y. Ishida, Y. Hatakeyama, K. Nomoto, N. Kaneda, T. Tsuchiya, A. Terano, T. Tsuchiya, and T. Nakamura: Jpn. J. Appl. Phys. Vol. 52 (2013), 08JN22.

DOI: 10.7567/jjap.52.08jn22

Google Scholar

[21] S. J. Pearton, C. R. Abernathy, and F. Ren: Gallium Nitride Processing for Electronics, Sensors, and Spintronics (Springer, Heidelberg, 2006), p.184.

DOI: 10.1007/1-84628-359-0

Google Scholar

[22] Information on http: /www. ioffe. ru/SVA/NSM/Semicond/GaN/bandstr. html#Donors.

Google Scholar