Homo-Epitaxial Growth on 2° Off-Cut 4H-SiC(0001) Si-Face Substrates Using H2-SiH4-C3H8 CVD System

Article Preview

Abstract:

We have grown epitaxial layers on 2° off-cut 4H-SiC(0001) Si-face substrates. The epitaxial layer surfaces on 2° off-cut substrates are more prone to generate step-bunching than on 4° off-cut substrates, which are observed by confocal microscopy with differential interference contrast. We have speculated that the step-bunching is generated at the beginning of an epitaxial growth. Triangular defect density of epitaxial layers on 2° off-cut substrates is as low as 0.7 cm–2 for the size corresponding to 150 mm. We have firstly reported distribution of 2° off-cut epitaxial layers for the 150-mm size using two 76.2-mm wafers: σ/mean = 3.3% for thickness, σ/mean = 7.3% for carrier concentration.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 778-780)

Pages:

214-217

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Chen and M. A. Capano, Growth and characterization of 4H-SiC epilayers on substrates with different off-cut angles, J. Appl. Phys. 98 (2005) 114907.

DOI: 10.1063/1.2137442

Google Scholar

[2] J. Zhang, S. Sunkari, J. Mazzola, B. Tyrrell, G. Stewart, R. Stahlbush, J. Caldwell, P. Klein, M. Mazzola, J. Casady, Epitaxial Growth on 2° Off-axis 4H SiC Substrates with Addition of HCl, Mater. Res. Soc. Symp. Proc. 1069-D07-10 (2008).

DOI: 10.1557/proc-1069-d07-10

Google Scholar

[3] K. Kosciewicz, W. Strupinski, D. Teklinska, K. Mazur, M. Tokarczyk, G. Kowalski, A. Olszyna, Epitaxial growth on 4H-SiC on-axis, 0. 5°, 1. 25°, 2°, 4°, 8° off-axis substrates—defects analysis and reduction, Mat. Sci. Forum 679-680 (2011) 95.

DOI: 10.4028/www.scientific.net/msf.679-680.95

Google Scholar

[4] T. Aigo, W. Ito, H. Tsuge, H. Yashiro, M. Katsuno, T. Fujimoto, W. Ohashi, 4H-SiC epitaxial growth on 2° off-axis substrates using trichlorosilane (TCS), Mat. Sci. Forum 717-720 (2012) 101.

DOI: 10.4028/www.scientific.net/msf.717-720.101

Google Scholar

[5] B. Kallinger, P. Berwian, J. Friedrich, B. Thomas, Step-controlled homoepitaxial growth of 4H-SiC on vicinal substrates, J. Cryst. Growth 381 (2013) 127.

DOI: 10.1016/j.jcrysgro.2013.07.024

Google Scholar

[6] C. Kudou, K. Tamura, T. Aigo, W. Ito, J. Nishio, K. Kojima, T. Ohno, Dependence of 4H-SiC Epitaxial Layer Quality on Growth Conditions with Wafer Size Corresponding to 150 mm, MRS Proceedings 1433, mrss 12-1433-h01-02 doi: 10. 1557/opl. 2012. 1140 (2012).

DOI: 10.1557/opl.2012.1140

Google Scholar

[7] H. Matsunami, T. Kimoto, Step-controlled epitaxial growth of SiC: high quality homoepitaxy, Mat. Sci. Eng. R20 (1997) 125.

DOI: 10.1016/s0927-796x(97)00005-3

Google Scholar

[8] K. Masumoto, C. Kudou, K. Tamura, J. Nishio, S. Ito, K. Kojima, T. Ohno, H. Okumura, Growth of silicon carbide epitaxial layers on 150-mm-diameter wafers using a horizontal hot-wall chemical vapor deposition, J. Cryst. Growth 381 (2013) 139.

DOI: 10.1016/j.jcrysgro.2013.07.025

Google Scholar

[9] A.A. Burk, D. Tsvetkov, D. Barnhardt, M.J. O'Loughlin, L. Garrett, P. Towner, J. Seaman, E. Deyneka, Y. Khlebnikow, J.W. Palmour, SiC Epitaxial Layer Growth in a 6×150 mm Warm-Wall Planetary Reactor, Mat. Sci. Forum 717-720 (2012) 75.

DOI: 10.4028/www.scientific.net/msf.717-720.75

Google Scholar