Ultrahigh-Voltage (> 20 kV) SiC PiN Diodes with a Space-Modulated JTE and Lifetime Enhancement Process via Thermal Oxidation

Article Preview

Abstract:

Ultrahigh-voltage SiC PiN diodes with an original junction termination extension (JTE) structure and improved forward characteristics are presented. A space-modulated JTE (SM-JTE) structure was designed by device simulation, and a high breakdown voltage of 26.9 kV was achieved by using a 270 μm-thick epilayer and 1050 μm-long JTE. In addition, lifetime enhancement process via thermal oxidation was performed to improve the forward characteristics. The on-resistance of the SiC PiN diodes was remarkably reduced by lifetime enhancement process. The temperature dependence of the on-resistance was also discussed.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 778-780)

Pages:

832-835

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Sundaresan, C. Sturdevant, M. Marripelly, E. Lieser, and R. Singh, Mater. Sci. Forum, 717-720 (2012) 949.

DOI: 10.4028/www.scientific.net/msf.717-720.949

Google Scholar

[2] L. Cheng, A. K. Agarwal, C. Capell, M. O'Loughlin, C. Jonas, J. Richmond, A. Burk, J. Palmour, A. A. Ogunniyi, H. K. O'Brien, and C. J. Scozzie, Mater. Sci. Forum, 740-742 (2013) 978.

DOI: 10.4028/www.scientific.net/msf.740-742.978

Google Scholar

[3] Y. Sugawara, D. Takayama, K. Asano, R. Singh, J. Palmour, and T. Hayashi, Proc. Int. Symp. Power Semiconductor Devices and ICs, 2001, p.27.

Google Scholar

[4] D. C. Sheridan, G. Niu, and J. D. Cressler, Solid-State Electron., 45 (2001) 1659.

Google Scholar

[5] J. B. Fedison, N. Ramungul, T. P. Chow, M. Ghezzo, and J. W. Kretchmer, IEEE Electron Device Lett., 22 (2001) 130.

DOI: 10.1109/55.910619

Google Scholar

[6] W. Sung, E. V. Brunt, B. J. Baliga, and A. Q. Huang, IEEE Electron Device Lett. 32 (2011) 880.

Google Scholar

[7] J. H. Zhao, P. Alexandrov, and X. Li, IEEE Electron Device Lett. 24 (2003) 402.

Google Scholar

[8] H-Y. Lee, M. Domeiji, R. Ghandi, C-M. Zetterling, and M. Östling, IEEE Trans. Electron Devices, 55 (2008) 1894.

Google Scholar

[9] Q. J. Zhang, A. Agarwal, C. Capell, L. Cheng, M. O'Loughlin, A. Burk, J. W. Palmour, S. Rumyantsev, T. Saxena, M. Levinshtein, A. Ogunniyi, H. O'Brien, and C. J. Scozzie, Mater. Sci. Forum, 717-720 (2012) 1151.

DOI: 10.4028/www.scientific.net/msf.717-720.1151

Google Scholar

[10] G. Feng, J. Suda, and T. Kimoto, IEEE Trans. Electron Devices, 59 (2012) 414.

Google Scholar

[11] H. Niwa, J. Suda, and T. Kimoto, Appl. Phys. Express, 5 (2012) 064011.

Google Scholar

[12] T. Hiyoshi and T. Kimoto, Appl. Phys. Express, 2 (2009) 091101.

Google Scholar

[13] T. Kimoto, T. Hiyoshi, T. Hayashi, and J. Suda, J. Appl. Phys., 108 (2010) 083721.

Google Scholar

[14] A. O. Konstantinov, Q. Wahab, N. Nordell, and U. Lindefelt, Appl. Phys. Lett., 71 (1997) 90.

Google Scholar

[15] N. Kaji, H. Niwa, J. Suda, and T. Kimoto, Jpn. J. Appl. Phys., 52 (2013) 070204.

Google Scholar

[16] K. Nakayama, A. Tanaka, M. Nishimura, K. Asano, T, Miyazawa, M. Ito, and H. Tsuchida, IEEE Trans. Electron Devices, 59 (2012) 895.

DOI: 10.1109/ted.2011.2181516

Google Scholar