Dislocation Conversion During SiC Solution Growth for High-Quality Crystals

Article Preview

Abstract:

Solution growth of SiC has attracted significant attention due to its potential for the production of high-quality SiC wafers. We have recently investigated the dislocation propagation behavior during SiC solution growth with the aim of reducing the dislocation density. Threading dislocations were found to be converted to defects on the basal planes during solution growth. Utilizing this dislocation conversion phenomenon, we have proposed a dislocation reduction process during solution growth and achieved high-quality 4H-SiC crystal growth. Here we confirm the potential of SiC solution growth for the production of high-quality SiC wafers.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 821-823)

Pages:

3-8

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Matsunami, T. Kimoto, Step-controlled epitaxial growth of SiC: High quality homoepitaxy, Mater. Sci. Eng. R 20 (1997) 125-166.

DOI: 10.1016/s0927-796x(97)00005-3

Google Scholar

[2] S. G. Müller, E. K. Sanche, D. M. Hansen, R. D. Drachev, G. Chung, B. Thomas, J. Zhang, M. J. Loboda, M. Dudley, H. Wang, F. Wu, S. Byrappa, B. Raghothamachar, G. Choi, Volume production of high quality SiC substrates and epitaxial layers: Defect trends and device applications, J. Cryst. Growth 352 (2012).

DOI: 10.1016/j.jcrysgro.2011.10.050

Google Scholar

[3] K. Kusunoki, S. Munetoh, K. Kamei, M. Hasebe, T. Ujihara, K. Nakajima, Solution growth of self-standing 6H-SiC single crystal using metal solvent, Mater. Sci. Forum 457-460 (2004) 123-126.

DOI: 10.4028/www.scientific.net/msf.457-460.123

Google Scholar

[4] K. Kusunoki, N. Okada, K. Kamei, K. Moriguchi, H. Daikoku, M. Kado, H. Sakamoto, T. Bessho, T. Ujihara, Top-seeded solution growth of three-inch-diameter 4H-SiC using convection control technique, J. Cryst. Growth, 395 (2014) 68-73.

DOI: 10.1016/j.jcrysgro.2014.03.006

Google Scholar

[5] H. Daikoku, M. Kado, H. Sakamoto, T. Bessho, K. Kusunoki, K. Kamei, Surface shape-controlled solution growth of 4H-SiC bulk crystal, in: The International Conference on Silicon Carbide and Related Materials 2013 Technical Digest, 2013, p.16.

DOI: 10.4028/www.scientific.net/msf.717-720.61

Google Scholar

[6] M. Kado, H. Daikoku, H. Sakamoto, H. Suzuki, T. Bessho, N. Yashiro, K. Kusunoki, N. Okada, K. Moriguchi, K. Kamei, High-speed growth of 4H-SiC single crystal using Si-Cr based melt, Mater. Sci. Forum, 457-460 (2013) 73-76.

DOI: 10.4028/www.scientific.net/msf.740-742.73

Google Scholar

[7] K. Kusunoki, K. Kamei, K. Seki, S. Harada, T. Ujihara, Nitrogen doping of 4H-SiC by the top-seeded solution growth technique using Si-Ti solvent, J. Cryst. Growth, 392 (2014) 60-65.

DOI: 10.1016/j.jcrysgro.2014.01.044

Google Scholar

[8] T. Shirai, K. Danno, A. Seki, H. Sakamoto, T. Bessho, Solution Growth of p-Type 4H-SiC Bulk Crystals with Low Resistivity, Mater. Sci. Forum 778-780 (2014) 75-78.

DOI: 10.4028/www.scientific.net/msf.778-780.75

Google Scholar

[9] R. Yakinova, E. Janzén, Current status and advances in the growth of SiC, Diamond Relat. Mater. 9 (2000) 432-438.

Google Scholar

[10] K. Kamei, K. Kusunoki, N. Yashiro, N. Okada, T. Tanaka, A. Yauchi, Solution growth of single crystalline 6H, 4H-SiC using Si-Ti-C melt, J. Cryst. Growth 311 (2009) 855-858.

DOI: 10.1016/j.jcrysgro.2008.09.142

Google Scholar

[11] M. Soueidan, G. Ferro, A vapor–liquid–solid mechanism for growing 3C-SiC single-domain layers on 6H-SiC(0001), Adv. Funct. Mater. 16 (2006) 975-979.

DOI: 10.1002/adfm.200500597

Google Scholar

[12] T. Ujihara, K. Seki, R. Tanaka, S. Kozawa, Alexander, K. Morimoto, K. Sasaki, Y. Takeda, High-quality and large-area 3C–SiC growth on 6H–SiC(0 0 0 1) seed crystal with top-seeded solution method, J. Cryst. Growth 318 (2011) 389-393.

DOI: 10.1016/j.jcrysgro.2010.10.148

Google Scholar

[13] S. Kozawa, K. Seki, Alexander, Y. Yamamoto, T. Ujihara, Y. Takeda, Defect evaluation of SiC crystal grown by solution method: the study by synchrotron X-ray topography and etching method, Mater. Sci. Forum 679-680 (2011) 28-31.

DOI: 10.4028/www.scientific.net/msf.679-680.28

Google Scholar

[14] Y. Yamamoto, S. Harada, K. Seki, A. Horio, T. Mitsuhashi, T. Ujihara, High-efficiency conversion of threading screw dislocations in 4H-SiC by solution growth, Appl. Phys. Express, 5 (2012) 115501 (3 pages).

DOI: 10.1143/apex.5.115501

Google Scholar

[15] T. Ujihara, S. Kozawa, K. Seki, Alexander, Y. Yamamoto, S. Harada, Conversion mechanism of threading screw dislocation during SiC solution growth, Mater. Sci. Forum, 717-720 (2012) 351-354.

DOI: 10.4028/www.scientific.net/msf.717-720.351

Google Scholar

[16] Y. Yamamoto, S. Harada, K. Seki, A. Horio, T. Mitsuhashi, T. Ujihara, Effect of surface polarity on the conversion of threading dislocations in solution growth, Mater. Sci. Forum 740-742 (2013) 15-18.

DOI: 10.4028/www.scientific.net/msf.740-742.15

Google Scholar

[17] S. Harada, Y. Yamamoto, K. Seki, T. Ujihara, Reduction of threading screw dislocation utilizing defect conversion during solution growth of 4H-SiC, Mater. Sci. Forum 740-742 (2013) 189-192.

DOI: 10.4028/www.scientific.net/msf.740-742.189

Google Scholar

[18] S. Harada, Y. Yamamoto, K. Seki, A. Horio, T. Mitsuhashi, M. Tagawa, T. Ujihara, Evolution of threading screw dislocation conversion during solution growth of 4H-SiC, APL Mater. 1 (2013) 022109 (7 pages).

DOI: 10.1063/1.4818357

Google Scholar

[19] S. Harada, Y. Yamamoto, S. Xiao, M. Tagawa, T. Ujihara, Surface morphology and threading dislocation conversion behavior during solution growth of 4H-SiC using Al-Si solvent, Mater. Sci. Forum 778-780 (2014) 67-70.

DOI: 10.4028/www.scientific.net/msf.778-780.67

Google Scholar

[20] Y. Yamamoto, S. Harada, K. Seki, A. Horio, T. Mitsuhashi, D. Koike, M. Tagawa, T. Ujihara, Low-dislocation-density 4H-SiC crystal growth utilizing dislocation conversion during solution method, Appl. Phys. Express, 7 (2014) 0655501 (3 pages).

DOI: 10.7567/apex.7.065501

Google Scholar

[21] S. Harada, Y. Yamamoto, K. Seki, A. Horio, M. Tagawa, T. Ujihara, Different behavior of threading edge dislocation conversion during solution growth of 4H-SiC depending on the Burgers vector, Acta Mater. in press.

DOI: 10.1016/j.actamat.2014.08.027

Google Scholar

[22] S. Harada, Y. Yamamoto, K. Seki, T. Ujihara, Current advances in SiC solution growth, Jpn, J. Cryst. Growth (in Japanese), 40 (2013) 25-32.

Google Scholar

[23] T. Umezaki, D. Koike, A. Horio, S. Harada, T. Ujihara, Increase in the growth rate by rotating the seed crystal at high speed during the solution growth of SiC, Mater. Sci. Forum, 778-780 (2014) 63-66.

DOI: 10.4028/www.scientific.net/msf.778-780.63

Google Scholar

[24] K. Kusunoki, N. Okada, K. Kamei, K. Moriguchi, H. Daikoku, M. Kado, H. Sakamoto, T. Bessho, T. Ujihara, Top-seeded solution growth of three-inch-diameter 4H-SiC using convection control technique, J. Cryst. Growth, 395 (2014) 68-73.

DOI: 10.1016/j.jcrysgro.2014.03.006

Google Scholar

[25] C. Zhu, S. Harada, K. Seki, H. Zhang, H. Niinomi, M. Tagawa, T. Ujihara, Influence of solution flow on step bunching in solution growth of SiC crystals, Cryst. Growth Des., 13 (2013) 3691-3696.

DOI: 10.1021/cg400706u

Google Scholar

[26] T. Mitani, N. Komatsu, T. Takahashi, T. Kato, K. Fujii, T. Ujihara, Y. Matsumoto, K. Kurashige, H. Okumura, Growth rate and surface morphology of 4H–SiC crystals grown from Si–Cr–C and Si–Cr–Al–C solutions under various temperature gradient, J. Cryst. Growth, 401 (2014).

DOI: 10.1016/j.jcrysgro.2013.11.031

Google Scholar

[27] S. Harada, Alexander, K. Seki, Y. Yamamoto, C. Zhu, Y. Yamamoto, S. Arai, J. Yamasaki, N. Tanaka, T. Ujihara, Polytype transformation by replication of stacking faults formed by two-dimensional nucleation on spiral steps during SiC solution growth, Cryst. Growth Des. 12 (2012).

DOI: 10.1021/cg300360h

Google Scholar