Investigation of the Breakdown Voltage in High Voltage 4H-SiC BJT with Respect to Oxide and Interface Charges

Article Preview

Abstract:

Ion implantation in silicon carbide (SiC) induces defects during the process. Implantation free processing can eliminate these problems. The junction termination extension (JTE) can also be formed without ion implantation in SiC bipolar junction transistor (BJT) using a well-controlled etching into the epitaxial base layer. The fixed charges at the SiC/SiO2 interface modify the effective dose of the JTEs, leakage current, and breakdown voltage. In this paper the influence of fixed charges (positive and negative) and also interface trap density at the SiC/SiO2 interface on the breakdown voltage in 4.5 kV 4H-SiC non-ion implanted BJT have been simulated. SiO2 as a surface passivation layer including interface traps and fixed charges has been considered in the analysis. Simulation result shows that the fixed charges influence the breakdown voltage significantly more than the interface traps. It also shows that the positive fixed charges reduce the breakdown voltage more than the negative fixed charges. The combination of interface traps and fixed charges must be considered when optimizing the breakdown voltage.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 821-823)

Pages:

834-837

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Ostling, in:, IEEE Electron Devices Meet., San Francisco, CA, 2010, p.13. 3. 1 – 13. 3. 4.

Google Scholar

[2] B.J. Baliga, Fundamentals of Power Semiconductor Devices, Springer, New York, (2008).

Google Scholar

[3] J. Zhang, X. Li, P. Alexandrov, J.H. Zhao, Electron Device Lett. IEEE 29 (2008) 471.

Google Scholar

[4] R. Ghandi, M. Domeij, B. Buono, C. -M. Zetterling, M. Östling, IEEE Electron Device Lett. 29 (2008) 1135.

Google Scholar

[5] B. Buono, H.S. Lee, M. Domeij, C.M. Zetterling, M. Östling, Mater. Sci. Forum 615-617 (2009) 841.

DOI: 10.4028/www.scientific.net/msf.615-617.841

Google Scholar

[6] R. Ghandi, B. Buono, M. Domeij, R. Esteve, A. Schoner, J. Han, S. Dimitrijev, S.A. Reshanov, C.M. Zetterling, M. Ostling, IEEE Trans. Electron Devices 58 (2011) 259.

DOI: 10.1109/ted.2010.2082712

Google Scholar

[7] V. V Afanasev, M. Bassler, G. Pensl, M. Schulz, Phys. Stat. Sol. 162 (1997) 321.

DOI: 10.1002/1521-396x(199707)162:1<321::aid-pssa321>3.0.co;2-f

Google Scholar

[8] R. Singh, Microelectron. Reliab. 46 (2006) 713.

Google Scholar

[9] P. Jamet, S. Dimitrijev, P. Tanner, J. Appl. Phys. 90 (2001) 5058.

Google Scholar

[10] L. Lanni, Silicon Carbide Bipolar Technology for High Temperature Integrated Circuits Doctoral Thesis in Information and Communication Technology, KTH Royal Institute of Technology, Stockholm, (2014).

Google Scholar

[11] H. -S. Lee, M. Domeij, C. -M. Zetterling, M. Östling, F. Allerstam, E.O. Sveinbjörnsson, Appl. Phys. Lett. 92 (2008) 082113.

Google Scholar

[12] H. -S. Lee, M. Domeij, C. -M. Zetterling, M. Östling, F. Allerstam, E.Ö. Sveinbjörnsson, Appl. Phys. Lett. 92 (2008).

Google Scholar

[13] A. Salemi, H. Elahipanah, B. Buono, C.M. Zetterling, M. Östling, Mater. Sci. Forum 740-742 (2013) 974.

DOI: 10.4028/www.scientific.net/msf.740-742.974

Google Scholar

[14] Sentaurus TCAD, Synopsis Inc. Version D-2010. 03, March 2010, Synopsis Inc., n. d.

Google Scholar