Electrical Characterization of Epitaxial Graphene Field-Effect Transistors with High-k Al2O3 Gate Dielectric Fabricated on SiC Substrates

Article Preview

Abstract:

Top-gated field-effect transistors have been created from bilayer epitaxial graphene samples that were grown on SiC substrates by a vacuum sublimation approach. A high-quality dielectric layer of Al2O3 was grown by atomic layer deposition to function as the gate oxide, with an e-beam evaporated seed layer utilized to promote uniform growth of Al2O3 over the graphene. Electrical characterization has been performed on these devices, and temperature-dependent measurements yielded a rise in the maximum transconductance and a significant shifting of the Dirac point as the operating temperature of the transistors was increased.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 821-823)

Pages:

937-940

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Liao, X. Duan, Graphene-dielectric integration for graphene transistors, Mater. Sci. Eng. R 70 (2010) 354-370.

Google Scholar

[2] T. Hopf, K. Vassilevski, E. Escobedo-Cousin, N.G. Wright, A.G. O'Neill, A.B. Horsfall, J.P. Goss, A. Barlow, G.H. Wells, M.R.C. Hunt, Optimizing the vacuum growth of epitaxial graphene on 6H-SiC, Mater. Sci. Forum 778 (2014) 1154-1157.

DOI: 10.4028/www.scientific.net/msf.778-780.1154

Google Scholar

[3] J.A. Robinson, M. LaBella III, K.A. Trumbull, X. Weng, R. Cavelero, T. Daniels, Z. Hughes, M. Hollander, M. Fanton, D. Snyder, Epitaxial graphene materials integration: effects of dielectric overlayers on structural and electronic properties, ACS Nano 4 (2010).

DOI: 10.1021/nn1003138

Google Scholar

[4] D.K. Schroder, Semiconductor material and device characterization, Third ed., Wiley-Interscience, New Jersey, (2006).

Google Scholar

[5] D.B. Farmer, H. Chiu, Y. Lin, K.A. Jenkins, F. Xia, P. Avouris, Utilization of a buffered dielectric to achieve high field-effect carrier mobility in graphene transistors, Nano Lett. 9 (2009) 4474-4478.

DOI: 10.1021/nl902788u

Google Scholar

[6] K.N. Parrish, D. Akinwande, Impact of contact resistance on the transconductance and linearity of graphene transistors, Appl. Phys. Lett. 98 (2011) 183505.

DOI: 10.1063/1.3665406

Google Scholar

[7] V.K. Nagareddy, I.P. Nikitina, D.K. Gaskill, J.L. Tedesco, R.L. Myers-Ward, C.R. Eddy, J.P. Goss, N.G. Wright, A.B. Horsfall, High temperature measurements of metal contacts on epitaxial graphene, Appl. Phys. Lett. 99 (2011) 073506.

DOI: 10.1063/1.3627167

Google Scholar

[8] N. Park, B. Kim, J. Lee, J. Kim, Influence of metal work function on the position of the Dirac point of graphene field-effect transistors, Appl. Phys. Lett. 95 (2009) 243105.

DOI: 10.1063/1.3274039

Google Scholar

[9] W.J. Yu, L. Liao, S.H. Chae, Y.H. Lee, X. Duan, Toward tunable band gap and tunable Dirac point in bilayer graphene with molecular doping, Nano Lett. 11 (2011) 4759-4763.

DOI: 10.1021/nl2025739

Google Scholar

[10] A. Deshpande, W. Bao, Z. Zhao, C.N. Lau, B.J. LeRoy, Mapping the Dirac point in gated bilayer graphene, Appl. Phys. Lett. 95 (2009) 243502.

DOI: 10.1063/1.3275755

Google Scholar

[11] K. Xu, C. Zeng, Q. Zhang, R. Yan, P. Ye, K. Wang, A.C. Seabaugh, H.G. Xing, J.S. Suehle, C.A. Richter, D.J. Gundlach, N.V. Nguyen, Direct measurement of Dirac point energy at the graphene/oxide interface, Nano Lett. 13 (2013) 131-136.

DOI: 10.1021/nl303669w

Google Scholar