A Competitive Lattice Model Monte Carlo Method for Simulation of Competitive Growth of Different Polytypes in SiC Single Crystal

Article Preview

Abstract:

A competitive lattice model was developed for the Kinetic Monte Carlo (KMC) simulation of the competition of 4H and 6H polytypes in SiC crystal growth based on the on-lattice model. In the competitive lattice model, site positions are fixed at the perfect crystal lattice positions without any adjustment of the site positions. The effect of surface steps was investigated, and behavior similar to step-controlled homoepitaxy was observed in KMC simulation of PVT grown SiC. Maintaining the step growth mode is an important factor to maintain a stable single polytype during SiC growth.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

45-48

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] U. Lindefelt, H. Iwata, S. Öberg, and P.R. Briddon, Phys. Rev. B 67, (2003)155204.

Google Scholar

[2] M. Kanaya, J. Takahashi, Y. Fujiwara, and A. Moritani, Appl. Phys. Lett. 58, (1991)56.

Google Scholar

[3] A. Fissel, J. Cryst. Growth 212, (2000)438.

Google Scholar

[4] T. Shiramomo, B. Gao, F. Mercier, S. Nishizawa, S. Nakano, Y. Kangawa, and K. Kakimoto, J. Cryst. Growth 352, (2012)177.

DOI: 10.1016/j.jcrysgro.2012.01.023

Google Scholar

[5] E. Schmitt, T. Straubinger, M. Rasp, M. Vogel, and A. Wohlfart, J. Cryst. Growth 310, (2008)966.

Google Scholar

[6] A. Itoh, H. Akita, T. Kimoto, and H. Matsunami, Appl. Phys. Lett. 65, (1994)1400.

Google Scholar

[7] T. Shiramomo, B. Gao, F. Mercier, S. Nishizawa, S. Nakano, and K. Kakimoto, J. Cryst. Growth 385, (2014)95.

Google Scholar

[8] D. Chaussende, M. Ucar, L. Auvray, F. Baillet, M. Pons, and R. Madar, Cryst. Growth Des. 5, (2005)1539.

Google Scholar

[9] R.A. Stein, P. Lanig, and S. Leibenzeder, Mater. Sci. Eng. B, 11, (1992)69.

Google Scholar

[10] G. Dhanaraj, F. Liu, M. Dudley, H. Zhang, and V. Prasad, MRS Proceedings. 815, J5. (2004)31.

Google Scholar

[11] C.C. Battaile, Comput. Methods Appl. Mech. Engrg. 197, (2008)3386.

Google Scholar

[12] M. Camarda, A. La Magna, and F. La Via, J. Comput. Phys. 227, (2007)1075-1093.

Google Scholar

[13] M. Stockmeier, R. Müller, S.A. Sakwe, P.J. Wellmann, and A. Magerl, J. Appl. Phys. 105, (2009)033511.

Google Scholar

[14] X. R. Huang, M. Dudley, W. Cho, R. S. Okojie and P. G. Neudeck, Mater. Sci. Forum 457-460, (2004)157.

Google Scholar

[15] R. F. Xiao, J. Alexander, and F. Rosenberger, Phys. Rev. A 43, (1991)2977.

Google Scholar

[16] H. J. Guo, W. Huang*, et. al., AIP Advances 4, (2014)097106.

Google Scholar

[17] H. J. Guo, W. Huang*, et. al., Computational Materials Science, 100, (2015)159–165.

Google Scholar