Physical Characterisation of 3C-SiC(001)/SiO2 Interface Using XPS

Article Preview

Abstract:

Normally-on MOSFETs were fabricated on 3C-SiC epilayers using high temperature (1300 °C) wet oxidation process. XPS analysis found little carbon at the MOS interface yet the channel mobility (60 cm2/V.s) is considerably low. Si suboxides (SiOx, x<2) exist at the wet oxidised 3C-SiC/SiO2 interface, which may act as interface traps and degrade the conduction performance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

151-154

Citation:

Online since:

May 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Esteve, A. Schoner, S. A. Reshanov, C. M. Zetterling, and H. Nagasawa, J. Appl. Phys, 106 (2009), 044513.

Google Scholar

[2] M. Krieger, S. Beljakowa, L. Trapaidze, T. Frank, H. B. Weber, G. Pensl, N. Hatta, M. Abe, H. Nagasawa, and A. Schöner, Phys. Stat. Sol. (b), 245 (2008), 1390-1395.

DOI: 10.1002/pssb.200844062

Google Scholar

[3] J. L. Cantin, H. J. von Bardeleben, Y. Ke, R. P. Devaty, and W. J. Choyke, Appl. Phys. Lett., 88 (2006), 092108.

Google Scholar

[4] A. Schöner, M. Krieger, G. Pensl, M. Abe, and H. Nagasawa, Chem. Vap. Depositon, 12 (2006), 523-530.

DOI: 10.1002/cvde.200606467

Google Scholar

[5] F. Li, Y. K. Sharma, M.R. Jennings, A. Pérez-Tomás, V. A. Shah, H. Rong, S. A.O. Russell, D. M. Martin, P. A. Mawby, Mater. Sci. Forum, 858 (2016), 667-670.

DOI: 10.4028/www.scientific.net/msf.858.667

Google Scholar

[6] R. Arora, J. Rozen, D. Fleetwood, K. Galloway, C. Zhang, J. Han, S. Dimitrijev, F. Kong, L. Feldman, S. Pantelides, and R. Schrimpf, IEEE Transactions on Nuclear Science, 56 (2009) 3185-3191.

DOI: 10.1109/tns.2009.2031604

Google Scholar

[7] H. Yano, F. Katafuchi, T. Kimoto, and H. Matsunami, IEEE Transactions on Electron Devices, 46 (1999), 504-510.

DOI: 10.1109/16.748869

Google Scholar

[8] G. Pearson and R. Treuting, Acta Crystallogr. 11 (1958) 397-399.

Google Scholar

[9] H. Nagasawa, M. Abe, K. Yagi, T. Kawahara, and N. Hatta, Phys. Stat. Sol. (b), 245 (2008), 1272-1280.

Google Scholar

[10] M. Bassler, G. Pensl, and V. Afanas'ev, Diamond and Related Materials, 6 (1997), 1472-1475.

Google Scholar

[11] R. Buczko, S. J. Pennycook, and S. T. Pantelides, Phys. Rev. Lett., 84 (2000), 943-946.

Google Scholar

[12] K. -C. Chang, Y. Cao, L. M. Porter, J. Bentley, S. Dhar, L. C. Feldman and J. R. Williams, J. Appl. Phys., 97 (2005), 104920.

Google Scholar