The Effect of Charge Redistribution on Flat-Band Voltage Turnaround in 4H-SiC MOS Capacitors

Article Preview

Abstract:

The existence of a turnaround in flat-band voltage shift of stressed MOS capacitors, fabricated on N-type 4H–SiC substrates, is reported in this paper. The turnaround is observed by room-temperature C–V measurements, after two minutes gate-bias stressing of the MOS capacitors at different temperatures. The existence of this turnaround effect demonstrates that a mechanism, in addition to the well-stablished tunneling to the near-interface oxide traps, is involved in the threshold voltage instability of 4H–SiC MOSFETs. This newly identified mechanism occurs due to charge redistribution of the compound polar species that exist in the SiO2–SiC transitional layer.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

167-170

Citation:

Online since:

May 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. J. Lelis, R. Green, D. B. Habersat, and M. El, Basic Mechanisms of Threshold-Voltage Instability and Implications for Reliability Testing of SiC MOSFETs, IEEE Trans. Electron Devices, 62 (2015) 316-323.

DOI: 10.1109/ted.2014.2356172

Google Scholar

[2] J. Rozen, S. Dhar, S. K. Dixit, V. V. Afanas'ev, F. O. Roberts, H. L. Dang, S. Wang, S. T. Pantelides, J. R. Williams, and L. C. Feldman, Increase in oxide hole trap density associated with nitrogen incorporation at the SiO2/SiC interface, J. Appl. Phys. 103 (2008).

DOI: 10.1063/1.2940736

Google Scholar

[3] D. B. Habersat and A. J. Lelis, Improved Observation of SiC/SiO2 Oxide Charge Traps Using MOS C–V, Mater. Sci. Forum 679 (2011) 366-369.

DOI: 10.4028/www.scientific.net/msf.679-680.366

Google Scholar

[4] J. Rozen, S. Dhar, M. E. Zvanut, J. R. Williams, and L. C. Feldman, Density of interface states, electron traps, and hole traps as a function of the nitrogen density in SiO2 on SiC, J. Appl. Phys. 105 (2009) 124506.

DOI: 10.1063/1.3131845

Google Scholar

[5] O. Dai, Y. Hiroshi, O. Yuki, H. Tomoaki, U. Yukiharu, and F. Takashi, Investigation of Near-Interface Traps Generated by NO Direct Oxidation in C-face 4H-SiC Metal–Oxide–Semiconductor Structures, Appl. Phys. Express 2 (2009) 021201.

DOI: 10.1143/apex.2.021201

Google Scholar

[6] A. Chanthaphan, T. Hosoi, S. Mitani, Y. Nakano, T. Nakamura, T. Shimura, and H. Watanabe, Investigation of unusual mobile ion effects in thermally grown SiO2 on 4H-SiC(0001) at high temperatures, Appl. Phys. Lett. 100 (2012) 252103.

DOI: 10.1063/1.4729780

Google Scholar

[7] D. Haasmann, H. A. Moghadam, J. Han, A. Aminbeidokhti, A. Iacopi, and S. Dimitrijev, Dipole Type Behavior of NO Grown Oxides on 4H–SiC, Mater. Sci. Forum 858 (2016) 453-546.

DOI: 10.4028/www.scientific.net/msf.858.453

Google Scholar

[8] W. Li, J. Zhao, and D. Wang, Structural and electronic properties of the transition layer at the SiO2/4H-SiC interface, AIP Advances 5 (2015) 017122.

DOI: 10.1063/1.4906257

Google Scholar

[9] F. Devynck, A. Alkauskas, P. Broqvist, and A. Pasquarello, Charge transition levels of carbon-, oxygen-, and hydrogen-related defects at the SiC/SiO2 interface through hybrid functionals, Phys. Review B 84 (2011) 235320.

DOI: 10.1103/physrevb.84.235320

Google Scholar

[10] P. Jamet, S. Dimitrijev, and P. Tanner, Effects of nitridation in gate oxides grown on 4H-SiC, " J. Appl. Phys. 90 (2001) 5058-5063.

DOI: 10.1063/1.1412579

Google Scholar

[11] H. A. Moghadam, S. Dimitrijev, H. Jisheng, D. Haasmann, and A. Aminbeidokhti, Transient-Current Method for Measurement of Active Near-Interface Oxide Traps in 4H-SiC MOS Capacitors and MOSFETs, IEEE Trans. Electron Devices, 62 (2015) 2670-2674.

DOI: 10.1109/ted.2015.2440444

Google Scholar