Modeling of Stacking Fault Expansion Velocity of Body Diode in 4H-SiC MOSFET

Article Preview

Abstract:

We present a model to explain forward voltage degradation of body diode in 4H-SiC MOSFET, and evaluate the velocity of SF expansion. First, by using in-situ photoluminescence (PL) observation, we investigated how a stacking fault (SF) expands from a basal plane dislocations (BPD) in the 4H-SiC epitaxial layer. Second, double-diffused MOSFETs were developed and measured before and after degradation. Then, the characteristics of the forward voltage degradation were modeled by a combination of PL imaging and electrical measurement, and the calculated characteristics are in good agreement with the measured ones. Finally, we tested the SiC MOSFETs under various stress conditions and evaluated the velocity of the SF expansion by calculation. This results indicate that the velocity of SF expansion increased with increasing forward current density and junction temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

214-217

Citation:

Online since:

May 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Funaki, M. Matsushita, M. Sasagawa, T. Kimoto, and T. Hikihara, A Study on SiC Devices in Synchronous Rectification of DC-DC Converter, in Proc. IEEE Appl. Power Electron. Conf., p.339–344, (2007).

DOI: 10.1109/apex.2007.357536

Google Scholar

[2] T. Ishigaki, H. Kageyama, A. Shima, D. Hisamoto, K. Tomiyama, Y. Sasaki, and S. Ibori, Freewheeling Diode-Less SiC-Inverter with Fast Short-Circuit Protection for Industrial Applications, Proceedings of the PCIM Europe , pp.199-123, (2015).

Google Scholar

[3] M. Skowronski, S. Ha, Degradation of hexagonal silicon-carbide-based bipolar devices, J. Appl. Phys. 99, 01101 (2006).

Google Scholar

[4] A. Galeckas, J. Linnros and P. Pirouz, Recombination-enhanced extension of stacking faults in 4H-SiC p-i-n diodes under forward bias, Appl. Phys. Lett. 81, 883 (2002).

DOI: 10.1063/1.1496498

Google Scholar

[5] J. D. Caldwell, R. E. Stahlbush, E. A. Imhoff1, K. D. Hobart1, M. J. Tadjer, Q. Zhang, and A. Agarwal, Recombination-induced stacking fault degradation of 4H-SiC merged-PiN-Schottky diodes, J. Appl. Phys. 106, 044504 (2009).

DOI: 10.1063/1.3194323

Google Scholar

[6] K. Konishi, S. Yamamoto, S. Nakata, Y. Toyoda and S. Yamakawa, Driving Force of Stacking Fault Expansion in 4H-SiC PN Diode by In Situ Electroluminescence Imaging, Mater. Sci. Forum 778-780, 342-345 (2014).

DOI: 10.4028/www.scientific.net/msf.778-780.342

Google Scholar

[7] S. Yamamoto, Y. Nakao, N. Tomita, S. Nakata, and S. Yamakawa, Development of 3. 3 kV SiC-MOSFET: suppression of forward voltage degradation of the body diode, Mater. Sci. Forum 951-954, 342-345 (2014).

DOI: 10.4028/www.scientific.net/msf.778-780.951

Google Scholar

[8] A. Tanaka, H. Matsuhata, N. Kawabata, D. Mori, K. Inoue, M. Ryo, T. Fujimoto, T. Tawara, M. Miyazato, M. Miyajima, K. Fukuda, A. Ohtsuki, T. Kato, H. Tsuchida, Y. Yonezawa and T. Kimoto, Growth of Shockley type stacking faults upon forward degradation in 4H-SiC p-i-n diodes, J. Appl. Phys. 119, 095711 (2016).

DOI: 10.1063/1.4943165

Google Scholar