Improvement of Local Deep Level Transient Spectroscopy for Microscopic Evaluation of SiO2/4H-SiC Interfaces

Abstract:

Article Preview

We demonstrate our new local deep level spectroscopy system improved for more accurate analysis of trap states at SiO2/4H-SiC interfaces. Full waveforms of the local capacitance transient with the amplitude of attofarads and the time scale of microseconds were obtained and quantitatively analyzed. The local energy distribution of interface state density in the energy range of EC − Eit = 0.31–0.38 eV was obtained. Two-dimensional mapping of the interface states showed inhomogeneous contrasts with the lateral spatial scale of several hundreds of nanometers, suggesting that the physical origin of the trap states at SiO2/SiC interfaces is likely to be microscopically clustered.

Info:

Periodical:

Edited by:

Robert Stahlbush, Philip Neudeck, Anup Bhalla, Robert P. Devaty, Michael Dudley and Aivars Lelis

Pages:

289-292

Citation:

Y. Yamagishi and Y. Cho, "Improvement of Local Deep Level Transient Spectroscopy for Microscopic Evaluation of SiO2/4H-SiC Interfaces", Materials Science Forum, Vol. 924, pp. 289-292, 2018

Online since:

June 2018

Export:

Price:

$38.00

* - Corresponding Author

[1] T. Kimoto, Jpn. J. Appl. Phys. 54 (2015) 040103.

[2] P. Fiorenza, F. Giannazzo, L. K. Swanson, A. Frazzetto, S. Lorenti, M. S. Alessandrino and F. Roccaforte, Beilstein Journal of Nanotechnology 4 (2013) 249.

DOI: https://doi.org/10.3762/bjnano.4.26

[3] P. Fiorenza, S. Di Franco, F. Giannazzo and F. Roccaforte, Nanotechnology 27 (2016) 315701.

[4] V. V. Afanas'ev, A. Stesmans and C. I. Harris, Materials Science Forum 264 (1998) 857.

[5] R. Nagai, R. Hasunuma and K. Yamabe, Jpn. J. Appl. Phys. 55 (2016) 08PC07.

[6] N. Chinone, A. Nayak, R. Kosugi, Y. Tanaka, S. Harada, H. Okumura and Y. Cho, Appl. Phys. Lett. 111 (2017) 061602.

[7] Y. Cho, A. Kirihara and T. Saeki, Review of Scientific Instruments 67 (1996) 2297.

[8] K. Yamasue and Y. Cho, Review of Scientific Instruments 86 (2015) 093704.

[9] N. Chinone, R. Kosugi, Y. Tanaka, S. Harada, H. Okumura and Y. Cho, Microelectronics Reliability 64 (2016) 566.

[10] D. V. Lang, J. Appl. Phys. 45 (1974) 3023.

[11] M. Hauck, J. Weisse, J. Lehmeyer, G. Pobegen, H. B. Weber and M. Krieger, Materials Science Forum 897 (2017) 111.

DOI: https://doi.org/10.4028/www.scientific.net/msf.897.111

[12] M. Noborio, J. Suda, S. Beljakowa, M. Krieger and T. Kimoto, Phys. Status Solidi (a) 206 (2009) 2374.

DOI: https://doi.org/10.1002/pssa.200925247

[13] V. V. Afanasev, M. Bassler, G. Pensl, and M. Schulz, Phys. Status Solidi (a) 162 (1997) 321.

[14] T. Akiyama, A. Ito, K. Nakamura, T. Ito, H. Kageshima, M. Uematsu, and K Shiraishi, Surface Science 641 (2015) 174.

Fetching data from Crossref.
This may take some time to load.