Improvement of Local Deep Level Transient Spectroscopy for Microscopic Evaluation of SiO2/4H-SiC Interfaces

Article Preview

Abstract:

We demonstrate our new local deep level spectroscopy system improved for more accurate analysis of trap states at SiO2/4H-SiC interfaces. Full waveforms of the local capacitance transient with the amplitude of attofarads and the time scale of microseconds were obtained and quantitatively analyzed. The local energy distribution of interface state density in the energy range of EC − Eit = 0.31–0.38 eV was obtained. Two-dimensional mapping of the interface states showed inhomogeneous contrasts with the lateral spatial scale of several hundreds of nanometers, suggesting that the physical origin of the trap states at SiO2/SiC interfaces is likely to be microscopically clustered.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

289-292

Citation:

Online since:

June 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Kimoto, Jpn. J. Appl. Phys. 54 (2015) 040103.

Google Scholar

[2] P. Fiorenza, F. Giannazzo, L. K. Swanson, A. Frazzetto, S. Lorenti, M. S. Alessandrino and F. Roccaforte, Beilstein Journal of Nanotechnology 4 (2013) 249.

DOI: 10.3762/bjnano.4.26

Google Scholar

[3] P. Fiorenza, S. Di Franco, F. Giannazzo and F. Roccaforte, Nanotechnology 27 (2016) 315701.

Google Scholar

[4] V. V. Afanas'ev, A. Stesmans and C. I. Harris, Materials Science Forum 264 (1998) 857.

Google Scholar

[5] R. Nagai, R. Hasunuma and K. Yamabe, Jpn. J. Appl. Phys. 55 (2016) 08PC07.

Google Scholar

[6] N. Chinone, A. Nayak, R. Kosugi, Y. Tanaka, S. Harada, H. Okumura and Y. Cho, Appl. Phys. Lett. 111 (2017) 061602.

DOI: 10.1063/1.4990865

Google Scholar

[7] Y. Cho, A. Kirihara and T. Saeki, Review of Scientific Instruments 67 (1996) 2297.

Google Scholar

[8] K. Yamasue and Y. Cho, Review of Scientific Instruments 86 (2015) 093704.

Google Scholar

[9] N. Chinone, R. Kosugi, Y. Tanaka, S. Harada, H. Okumura and Y. Cho, Microelectronics Reliability 64 (2016) 566.

DOI: 10.1016/j.microrel.2016.07.088

Google Scholar

[10] D. V. Lang, J. Appl. Phys. 45 (1974) 3023.

Google Scholar

[11] M. Hauck, J. Weisse, J. Lehmeyer, G. Pobegen, H. B. Weber and M. Krieger, Materials Science Forum 897 (2017) 111.

DOI: 10.4028/www.scientific.net/msf.897.111

Google Scholar

[12] M. Noborio, J. Suda, S. Beljakowa, M. Krieger and T. Kimoto, Phys. Status Solidi (a) 206 (2009) 2374.

DOI: 10.1002/pssa.200925247

Google Scholar

[13] V. V. Afanasev, M. Bassler, G. Pensl, and M. Schulz, Phys. Status Solidi (a) 162 (1997) 321.

DOI: 10.1002/1521-396x(199707)162:1<321::aid-pssa321>3.0.co;2-f

Google Scholar

[14] T. Akiyama, A. Ito, K. Nakamura, T. Ito, H. Kageshima, M. Uematsu, and K Shiraishi, Surface Science 641 (2015) 174.

DOI: 10.1016/j.susc.2015.06.028

Google Scholar