VPD-DC-TXRF for Metallic Contamination Analysis of Ge Wafers

Abstract:

Article Preview

Info:

Periodical:

Solid State Phenomena (Volumes 103-104)

Edited by:

Paul Mertens, Marc Meuris and Marc Heyns

Pages:

213-216

DOI:

10.4028/www.scientific.net/SSP.103-104.213

Citation:

D. Hellin et al., "VPD-DC-TXRF for Metallic Contamination Analysis of Ge Wafers", Solid State Phenomena, Vols. 103-104, pp. 213-216, 2005

Online since:

April 2005

Export:

Price:

$35.00

[1] C.O. Chui, S. Ramanathan, B.B. Triplett, P.C. McIntyre and K.C. Saraswat, Germanium MOS Capacitors Incorporating Ultrathin High-k Gate Dielectric, IEEE Electron Device Letters 23 (8) (2002) 473-475.

DOI: 10.1109/led.2002.801319

[2] See: The International Technology Roadmap for Semiconductors, Semiconductor Industry Association.

[3] D. Hellin, T. Bearda, C. Zhao, G. Raskin, P.W. Mertens, S. De Gendt, M.M. Heyns and C. Vinckier, Spectrochim. Acta 58B (2003) 2093-2104.

DOI: 10.1016/j.sab.2003.05.001

[4] S. Pahlke, L. Fabry, L. Kotz, C. Mantler and T. Ehmann, Spectrochim. Acta 56B (2001) 2261-2274.

[5] D. Hellin, J. Rip, S. Arnauts, S. De Gendt, P.W. Mertens and C. Vinckier, Validation of VPD-DC-TXRF Spectrometry for Metallic Contamination Analysis of Silicon Wafers, in press for Spectrochim. Acta B.

DOI: 10.1016/j.sab.2004.03.011

[6] D. Hellin, W. Fyen, J. Rip, T. Delande, P.W. Mertens, S. De Gendt and C. Vinckier, TXRF Saturation Effects on Micro-droplet Residues, submitted for publication in J. Analytical Atomic Spectroscopy.

DOI: 10.1039/b410643a

[7] U. Reus, Spectrochim. Acta 44B (1989) 533-541.

[8] Y. Yamada, S. Kozuka, A. Shimazaka and M. Takenaka, in: Diffusion and Defect Data Part B (Solid State Phenomena) ,M. Heyns, P. Mertens and M. Meuris (Editors) 92 (2003) 97.

00.

20.

40.

60.

80.

[1] 00.

[1] 20.

[1] E+12 1. E+14 1. E+16 1. E+18 N Ge (atoms) WL MoK ηTXRF ■ WLβ ◊ MoKα 0.

2.

4.

6.

8 1.

[1] 2 K Ca Cr Fe Ni Zn η Collection ηVPD-DC-TXRF.

00.

20.

40.

60.

80.

[1] 00 HF HCl.

[1] E+10.

[1] E+11.

[1] E+12.

[1] E+13.

[1] E+14.

[1] E+15 HF HCl N Ge (atoms) (a) (b) Figure 1: Contact angle as a function of the HCl concentration in the contact droplet on Ge wafers after HF VPD treatment. Figure 2: Collection efficiency of VPD-DC applied on multi-element spin coated Ge wafers. Figure 3: TXRF accuracy measured on metal traces (K, Sc, Cr, Fe, Ni, Zn all at 2. 5E12 atoms) in residues with increasing Ge content for two TXRF excitation energies.

[1] E+11.

[1] E+12.

[1] E+13.

[1] E+14.

[1] E+15.

[1] E+16.

[1] E+17 50 60 70 80 90 100 N Ge (atoms) 0. 2% HCl.

[2] 2% HCl 20% HCl.

00.

20.

40.

60.

80.

[1] 00.

[1] 20.

[1] 40 50 60 70 80 90 100 T Waf er (°C).

[2] 2%HCl 20%HCl 0% HCl ηTXRF (a) (b) TWafer (ºC) TWafer (ºC) Figure 4 (a): Influence of the HCl concentration and wafer temperature on the removal of Ge (start amount 4E16 atoms) and (b) related TXRF detection efficiency of traces (K, Ca, Cr, Fe, Ni, Zn all at 2. 5E12 atoms) Figure 5: (a) Residual Ge content after VPD-DC on Ni spin coated Ge wafers with two VPD treatments and (b) efficiency of the total VPD-DC-TXRF process 0 10 20 30 40 50 60 70 0 10 20 30 40 θθθθContact (deg) CHCl (w%).

DOI: 10.4028/3-908451-06-x.213

In order to see related information, you need to Login.