A New Approach to Study the Damage Induced by Inert Gases Implantation in Silicon

Article Preview

Abstract:

In the present work, we report on the effects of the implantation temperature on the formation of bubbles and extended defects in Ne+-implanted Si(001) substrates. The implantations were performed at 50 keV to a fluence of 5x1016 cm-2, for distinct implantation temperatures within the 250°C≤Ti≤800°C interval. The samples are investigated using a combination of cross-sectional and plan-view Transmission Electron Microscopy (TEM) observations and Grazing Incidence Small-Angle X-ray Scattering (GISAXS)measurements. In comparison with similar He implants, we demonstrate that the Ne implants can lead to the formation of a much denser bubble system.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 108-109)

Pages:

357-364

Citation:

Online since:

December 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.J. Morschbacher, D.L. da Silva, P.F.P. Fichtner, E. Oliviero, M. Behar, F. C. Zawislak, B. Hollander, M. Luysberg, S. Mantl, R. Loo, M. Caymax, Nucl. Instrum. Methods Phys. Rev. B, 219 (2004) 703.

DOI: 10.1016/j.nimb.2004.01.146

Google Scholar

[2] P.F.P. Fichtner, J.R. Kaschny, R.A. Yankov, A. Mucklich, U. Kreissig, W. Skorupa, Appl. Phys. Lett, 70 (1997) 732.

Google Scholar

[3] V. Raineri, M. Saggio, Appl. Phys. Lett., 71(1997)1673.

Google Scholar

[4] M.L. David, M.F. Beaufort, J.F. Barbot, J. Appl. Phys. 93 (2003) 1438.

Google Scholar

[5] D.L. da Silva, P.F.P. Fichtner, A. Peeva, M. Behar, R. Koegler, W. Skorupa, Nucl. Instrum. Methods Phys. Rev. B, 175 (2001) 335.

Google Scholar

[6] D. L. da Silva, M.J. Morschbacher, P.F.P. Fichtner, E. Oliviero, M. Behar, Nucl. Instrum. Methods Phys. Rev. B, 219 (2004) 713.

Google Scholar

[7] V. Raineri, S. Coffa, E. Szilagyi, J. Gyulai, E. Rimini, Phys. Rev. B, 61 (2000) 937.

Google Scholar

[8] van veen 1987, C.C. Griffioen, J. H. Evans, P.C. De Jong, A. Van Veen, Nucl. Instrum. Methods Phys. Rev. B, 27, (1987) 417.

Google Scholar

[9] J.R. Kaschny, P.F.P. Fichtner, A. Muecklich, U. Kreissig, R.A. Yankov, W. Skorupa, Nucl. Instrum. Methods Phys. Rev. B, 137 (1998) 583.

Google Scholar

[10] V. Raineri, M. Saggio, E. Remini, J. Mater. Res. 15 (2000) 1449.

Google Scholar

[11] E. Oliviero, S. Peripolli, P.F.P. Fichtner, L. Amaral, Nucl. Instrum. Methods Phys. Rev. B 112, (2004), 111.

Google Scholar

[12] S. Peripolli, E. Oliviero, P.F.P. Fichner.

Google Scholar

[1] Morschbacher MJ, da Silva DL, Fichtner PFP, Oliviero E, Behar M, Zawislak FC, Hollander B, Luysberg M, Mantl S, Loo R, Caymax M NIM B, 219 (2004) 703.

DOI: 10.1016/j.nimb.2004.01.146

Google Scholar

[13] D. Babonneau, M.F. Beaufort, S. Rousselet, A. Declémy, and J.F. Barbot, submitted to Phys. Rev. B.

Google Scholar

[14] M.F. Beaufort, S.E. Donnelly, S. Rousselet, M.L. David and J.F. Barbot, Nucl. Instrum. Methods Phys. Rev. B (to be published).

Google Scholar