Dislocation Motions in Czochralski Silicon Wafers Treated by Rapid Thermal Processing under Different Atmospheres

Article Preview

Abstract:

Effects of prior rapid thermal processing (RTP) under different atmospheres on the motion of dislocations initiated from indentations in Czochralski (CZ) silicon have been investigated. It is found that the maximum gliding distances of dislocations in the specimens with the prior RTP under nitrogen (N2) atmosphere are much smaller than those in the specimens with the prior RTP under argon (Ar) atmosphere. This is also the case when the specimens received annealing for oxygen precipitation (OP) subsequent to the RTP at 1250 °C under N2 and Ar atmospheres, respectively. It is believed that the nitrogen atoms introduced during the RTP under nitrogen atmosphere or the oxygen precipitates facilitated by the RTP-introduced nitrogen atoms can exhibit pinning effect on the dislocation motion, which increases the critical resolved shear stress for dislocation glide.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 205-206)

Pages:

238-242

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.J. Timans, Rapid thermal processing technology for the 21st century, Mater. Sci. Semicond. Process. 1 (1998) 169-179.

Google Scholar

[2] G.A. Hawkins, J.P. Lavine, The effect of rapid thermal annealing on the precipitation of oxygen in silicon, J. Appl. Phys. 65 (1989) 3644-3654.

DOI: 10.1063/1.342589

Google Scholar

[3] X.G. Yu, D.R. Yang, X.Y. Ma, D.L. Que, Effect of rapid thermal process on oxygen precipitation and denuded zone in nitrogen-doped silicon wafers, Microelectron. Eng. 69 (2003) 97-104.

DOI: 10.1016/s0167-9317(03)00276-4

Google Scholar

[4] J.H. Chen, D.R. Yang, X.Y. Ma, H. Li, D.L. Que, Intrinsic gettering based on rapid thermal annealing in germanium-doped czochralski silicon, J. Appl. Phys. 101 (2007) 033526.

DOI: 10.1063/1.2436829

Google Scholar

[5] K. Sumino, I. Yonenaga, M. Imai, T. Abe, Effects of nitrogen on dislocation behavior and mechanical strength in silicon-crystals, J. Appl. Phys. 54 (1983) 5016-5020.

DOI: 10.1063/1.332770

Google Scholar

[6] Z.D. Zeng, J.H. Chen, Y.H. Zeng, X.G. Ma, D.R. Yang, Immobilization of dislocations by oxygen precipitates in czochralski silicon: Feasibility of precipitation strengthening mechanism, J. Cryst. Growth. 324 (2011) 93-97.

DOI: 10.1016/j.jcrysgro.2011.04.023

Google Scholar

[7] T. Fukuda, A. Ohsawa, Mechanical strength of silicon crystals with oxygen and boron impurities, Appl. Phys. Lett. 58 (1991) 2634-2635.

DOI: 10.1063/1.104791

Google Scholar

[8] V. Orlov, H. Richter, A. Fischer, J. Reif, T. Müller, R. Wahlich, Mechanical properties of nitrogen-doped cz silicon crystals, Mater. Sci. Semicond. Process. 5 (2002) 403-407.

DOI: 10.1016/s1369-8001(02)00121-x

Google Scholar

[9] S. W. Lee, S. Danyluk, A study of indentation annealing of (111) p-type single-crystal silicon J. Mater. Sci. 23 (1988) 55-60.

DOI: 10.1007/bf01174034

Google Scholar

[10] T. Fukuda, A. Ohsawa, Mechanical strength of silicon crystals with oxygen and germanium impurities, Appl. Phys. Lett. 60 (1992) 1184-1186.

DOI: 10.1063/1.107399

Google Scholar

[11] D.S. Li, D.R. Yang, D.L. Que, Effects of nitrogen on dislocations in silicon during heat treatment, Physica B 273-4 (1999) 553-556.

DOI: 10.1016/s0921-4526(99)00571-2

Google Scholar

[12] C. R. Alpass, J. D. Murphy, R. J. Falster, and P. R. Wilshaw, Nitrogen diffusion and interaction with dislocations in single-crystal silicon, J. Appl. Phys. 105 (2009) 013519.

DOI: 10.1063/1.3050342

Google Scholar

[13] Z.D. Zeng, X.Y. Ma, J.H. Chen, D.R. Yang, I. Ratschinski, F. Hevroth, H.S. Leipner, Effect of oxygen precipitates on dislocation motion in czochralski silicon, J. Cryst. Growth. 312 (2010) 169-173.

DOI: 10.1016/j.jcrysgro.2009.10.030

Google Scholar

[14] B. Wang, M.S. Dissertation Hangzhou: Zhejiang Uninversity, (2011).

Google Scholar

[15] K. Sumino, I. Yonenaga, Dislocation dynamics and mechanical-behavior of elemental and compound semiconductors, Phys. Status Solidi A 138 (1993) 573-581.

DOI: 10.1002/pssa.2211380225

Google Scholar

[16] I. Yonenaga, Nitrogen effects on generation and velocity of dislocations in czochralski-grown silicon, J. Appl. Phys. 98 (2005) 023517.

DOI: 10.1063/1.1990259

Google Scholar

[17] S.M. Hu, On indentation dislocation rosettes in silicon, J. Appl. Phys. 46 (1975) 1470-1472.

Google Scholar

[18] T. Suzuki, I. Yonenaga, H.O.K. Kirchner, Yield strength of diamond, Phys. Rev. Lett. 75 (1995) 3470-3472.

DOI: 10.1103/physrevlett.75.3470

Google Scholar