[1]
P.J. Timans, Rapid thermal processing technology for the 21st century, Mater. Sci. Semicond. Process. 1 (1998) 169-179.
Google Scholar
[2]
G.A. Hawkins, J.P. Lavine, The effect of rapid thermal annealing on the precipitation of oxygen in silicon, J. Appl. Phys. 65 (1989) 3644-3654.
DOI: 10.1063/1.342589
Google Scholar
[3]
X.G. Yu, D.R. Yang, X.Y. Ma, D.L. Que, Effect of rapid thermal process on oxygen precipitation and denuded zone in nitrogen-doped silicon wafers, Microelectron. Eng. 69 (2003) 97-104.
DOI: 10.1016/s0167-9317(03)00276-4
Google Scholar
[4]
J.H. Chen, D.R. Yang, X.Y. Ma, H. Li, D.L. Que, Intrinsic gettering based on rapid thermal annealing in germanium-doped czochralski silicon, J. Appl. Phys. 101 (2007) 033526.
DOI: 10.1063/1.2436829
Google Scholar
[5]
K. Sumino, I. Yonenaga, M. Imai, T. Abe, Effects of nitrogen on dislocation behavior and mechanical strength in silicon-crystals, J. Appl. Phys. 54 (1983) 5016-5020.
DOI: 10.1063/1.332770
Google Scholar
[6]
Z.D. Zeng, J.H. Chen, Y.H. Zeng, X.G. Ma, D.R. Yang, Immobilization of dislocations by oxygen precipitates in czochralski silicon: Feasibility of precipitation strengthening mechanism, J. Cryst. Growth. 324 (2011) 93-97.
DOI: 10.1016/j.jcrysgro.2011.04.023
Google Scholar
[7]
T. Fukuda, A. Ohsawa, Mechanical strength of silicon crystals with oxygen and boron impurities, Appl. Phys. Lett. 58 (1991) 2634-2635.
DOI: 10.1063/1.104791
Google Scholar
[8]
V. Orlov, H. Richter, A. Fischer, J. Reif, T. Müller, R. Wahlich, Mechanical properties of nitrogen-doped cz silicon crystals, Mater. Sci. Semicond. Process. 5 (2002) 403-407.
DOI: 10.1016/s1369-8001(02)00121-x
Google Scholar
[9]
S. W. Lee, S. Danyluk, A study of indentation annealing of (111) p-type single-crystal silicon J. Mater. Sci. 23 (1988) 55-60.
DOI: 10.1007/bf01174034
Google Scholar
[10]
T. Fukuda, A. Ohsawa, Mechanical strength of silicon crystals with oxygen and germanium impurities, Appl. Phys. Lett. 60 (1992) 1184-1186.
DOI: 10.1063/1.107399
Google Scholar
[11]
D.S. Li, D.R. Yang, D.L. Que, Effects of nitrogen on dislocations in silicon during heat treatment, Physica B 273-4 (1999) 553-556.
DOI: 10.1016/s0921-4526(99)00571-2
Google Scholar
[12]
C. R. Alpass, J. D. Murphy, R. J. Falster, and P. R. Wilshaw, Nitrogen diffusion and interaction with dislocations in single-crystal silicon, J. Appl. Phys. 105 (2009) 013519.
DOI: 10.1063/1.3050342
Google Scholar
[13]
Z.D. Zeng, X.Y. Ma, J.H. Chen, D.R. Yang, I. Ratschinski, F. Hevroth, H.S. Leipner, Effect of oxygen precipitates on dislocation motion in czochralski silicon, J. Cryst. Growth. 312 (2010) 169-173.
DOI: 10.1016/j.jcrysgro.2009.10.030
Google Scholar
[14]
B. Wang, M.S. Dissertation Hangzhou: Zhejiang Uninversity, (2011).
Google Scholar
[15]
K. Sumino, I. Yonenaga, Dislocation dynamics and mechanical-behavior of elemental and compound semiconductors, Phys. Status Solidi A 138 (1993) 573-581.
DOI: 10.1002/pssa.2211380225
Google Scholar
[16]
I. Yonenaga, Nitrogen effects on generation and velocity of dislocations in czochralski-grown silicon, J. Appl. Phys. 98 (2005) 023517.
DOI: 10.1063/1.1990259
Google Scholar
[17]
S.M. Hu, On indentation dislocation rosettes in silicon, J. Appl. Phys. 46 (1975) 1470-1472.
Google Scholar
[18]
T. Suzuki, I. Yonenaga, H.O.K. Kirchner, Yield strength of diamond, Phys. Rev. Lett. 75 (1995) 3470-3472.
DOI: 10.1103/physrevlett.75.3470
Google Scholar