New Results on the Electrical Activity of 3d-Transition Metal Impurities in Silicon

Article Preview

Abstract:

In silicon several electronic levels are known which can be attributed to transition metals. Ignorance persists however about the specific nature of the defect centers. Some progress was made recently on identifying electronic levels from substitutional or interstitial lattice sites and on identifying levels from defect complexes. The sensitive Laplace DLTS technique allows us to determine depth profiles or the influence of the electrical field on the emission rate with unparalleled accuracy. Three examples will be discussed in this short review: The identification of the CoB pair, a reinterpretation of the Ti DLTS spectrum and the complex formation of interstitial Cu with substitutional Cu as the nucleation site.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 205-206)

Pages:

245-254

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. R Weber, Appl. Phys. A: Solids Surf. 30 (1983) 1.

Google Scholar

[2] K. Graff, Metal impurities in Silicon-Device Fabrication, Springer, Berlin, (1995).

Google Scholar

[3] A. A. Istratov and E. R. Weber, Appl. Phys. A: Mater. Sci. Process. 66 (1998) 123.

Google Scholar

[4] see articles in: Theory of Defects in Semiconductors, edited by D. A. Drabold and S. K. Estreicher, Springer, Berlin, (2007).

Google Scholar

[5] G.W. Ludwig, H.H. Woodbury, Solid State Phys. 13 (1962) 223. H.H. Woodbury, G. W. Ludwig, Phys. Rev. 117 (1960) 102.

Google Scholar

[6] H. Lemke, W. Zulehner, Physica B 273-274 (1999) 398-403.

Google Scholar

[7] J. -U. Sachse, E.O. Sveinbjörnsson, N. Yarykin, J. Weber, Mater. Sci. & Eng. B58 (1999) 134.

Google Scholar

[8] N. Yarykin, J. -U. Sachse, H. Lemke, and J. Weber, Phys. Rev. B 59 (1999) 5551.

Google Scholar

[9] O. V. Feklisova and N. A. Yarykin, Semicond. Sci. Technol. 12 (1997) 742.

Google Scholar

[10] J. -U. Sachse, J. Weber and E.Ö. Sveinbjörnsson, Phys. Rev. B 60 (1999) 1474.

Google Scholar

[11] D. V. Lang, J. Appl. Phys. 45 (1974) 3023.

Google Scholar

[12] A. A. Istratov, J. Appl. Phys. 82 (1997) 2965.

Google Scholar

[13] L. Dobaczewski, A.R. Peaker, K. Bonde Nielsen, J. Appl. Phys. 96 (2004) 4689.

Google Scholar

[14] W. Jost and J. Weber, Phys. Rev. B 54 (1996) R11038.

Google Scholar

[15] H. Lemke, Phys. Status Solidi A 85 (1984) K133.

Google Scholar

[16] H. Nakashima, Y. Tsumori, T. Miyagawa, and K. Hashimoto, Jpn. J. Appl. Phys. 29 (1990) 1395.

Google Scholar

[17] W. Jost, J. Weber, and H. Lemke, Semicond. Sci. Technol. 11 (1996) 22; and 11 (1996) 525.

Google Scholar

[18] L. Scheffler, Vl. Kolkovsky, and J. Weber, J. Appl. Phys. 113 (2013) 183714.

Google Scholar

[19] A. Endrös, Phys. Rev. Lett. 63 (1989) 70.

Google Scholar

[20] J. Frenkel, Phys. Rev. 54 (1938) 647.

Google Scholar

[21] J. Hartke, J. Appl. Phys. 39 (1968) 4871.

Google Scholar

[22] R. Brunwin, B. Hamilton, P. Jordan, A.R. Peaker, Electron. Lett. 15 (1979) 349.

Google Scholar

[23] D. Mathiot and S. Hocine, J. Appl. Phys. 66 (1989) 5862.

Google Scholar

[24] GAO Xiaoping, Xu Zhenjia, Chin. Phys. Lett. 3 (1986) 473.

Google Scholar

[25] A.C. Wang, C.T. Sah, J. Appl. Phys. 56 (1984)1021.

Google Scholar

[26] D.J. Backlund and S.K. Estreicher, Phys. Rev. B 82 (2010) 155208.

Google Scholar

[27] J. Olea, M. Toledano-Luque, D. Pastor, G. Gonzalez-Diaz, and I. Martil, J. Appl. Phys. 104 (2008) 016105.

Google Scholar

[28] W. Jost and J. Weber, Phys. Rev. B 54 (1996) R11038.

Google Scholar

[29] Vl. Kolkovsky, L. Scheffler, and J. Weber, Phys. Stat. Sol. C 9 (2012) (1996).

Google Scholar

[30] Vl. Kolkovsky, to be published.

Google Scholar

[31] W.R. Buchwald and N.M. Johnson, J. Appl. Phys. 64 (1998) 958.

Google Scholar

[32] S. Kuge and H. Nakashima, Japn. J. Appl. Phys. 30 (1991) 2659.

Google Scholar

[33] D.A. van Wezep and C.A.J. Ammerlaan, J. Electron. Mater. 14a (1985) 863.

Google Scholar

[34] S. Knack, J. Weber, H. Lemke, and H. Riemann, Phys. Rev. B 65 (2002) 165203.

Google Scholar

[35] N. Yarykin, J. Weber, Phys. Rev. B 83 (2011) 125207; N. Yarykin, J. Weber, submitted to Phys. Rev. B.; N. Yarykin, J. Weber see this conference.

DOI: 10.1103/physrevb.88.085205

Google Scholar

[36] J. Weber, H. Bauch, R. Sauer, Phys. Rev. B 25 (1982) 7688.

Google Scholar

[37] H.B. Erzgraeber, K. Schmalz, J. Appl. Phys. 78 (1995) 4066.

Google Scholar

[38] A. Mesli and T. Heiser, Phys. Rev. B 45 (1992) 11632.

Google Scholar

[39] A.A. Istratov and E.R. Weber, J. Electrochem. Soc. 149 (2002) G21.

Google Scholar

[40] M. Steger, A. Yang, T. Sekiguchi, K. Saeedi, M. L. W. Thewalt, M. O. Henry, K. Johnston, H. Riemann, N. V. Abrosimov, M. F. Churbanov, A. V. Gusev, A. K. Kaliteevskii, O. N. Godisov, P. Becker, and H. -J. Pohl, J. Appl. Phys. 110 (2011) 081301.

DOI: 10.1063/1.3651774

Google Scholar

[41] N. Yarykin and J. Weber, Semiconductors 47 (2013) 275.

Google Scholar