Epitaxial Growth of Boron Carbide on 4H-SiC

Article Preview

Abstract:

In this work, the successful heteroepitaxial growth of boron carbide (BxC) on 4HSiC(0001) 4° off substrate using chemical vapor deposition (CVD) is reported. Towards this end, a two-step procedure was developed, involving the 4H-SiC substrate boridation under BCl3 precursor at 1200°C, followed by conventional CVD under BCl3 + C3H8 at 1600°C. Such a procedure allowed obtaining reproducibly monocrystalline (0001) oriented films of BxC with a step flow morphology at a growth rate of 1.9 μm/h. Without the boridation step, the layers are systematically polycrystalline. The study of the epitaxial growth mechanism shows that a monocrystalline BxC layer is formed after boridation but covered with a B-and Si-containing amorphous layer. Upon heating up to 1600°C, under pure H2 atmosphere, the amorphous layer was converted into epitaxial BxC and transient surface SiBx and Si crystallites. These crystallites disappear upon CVD growth.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] A. El-Shaer, A. Bakin, E. Schlenker, A.C. Mofor, G. Wagner, S.A. Reshanov, A. Waag, Superlattices and Microstructures 42 (2007) 387–391.

DOI: 10.1016/j.spmi.2007.04.078

Google Scholar

[2] A. Pérez-Tomás, M.R. Jennings, M. Davis, V. Shah, T. Grasby, J.A. Covington, P.A. Mawby, Microelectronics Journal 38 (2007) 1233–1237.

DOI: 10.1016/j.mejo.2007.09.019

Google Scholar

[3] B.J. Johnson, M.A. Capano, M.A. Mastro, Solid-State Electronics 50 (2006) 1413–1419.

Google Scholar

[4] V. Domnich, S. Reynaud, R.A. Haber, M. Chhowalla, J. Am. Ceram. Soc. 94 (2011) 3605–3628.

DOI: 10.1111/j.1551-2916.2011.04865.x

Google Scholar

[5] H. Werheit, J. Phys.: Condens. Matter 18 (2006) 10655–10662.

Google Scholar

[6] H. Werheit, M. Laux, U. Kuhlmann, R. Telle, Physica Status Solidi B Basic Research 172 (1992) K81–K86.

DOI: 10.1002/pssb.2221720233

Google Scholar

[7] H. Werheit, Solid State Sciences 86 (2018) 38–44.

Google Scholar

[8] H. Werheit, H.W. Rotter, S. Shalamberidze, A. Leithe-Jasper, T. Tanaka, Physica Status Solidi (b) 248 (2011) 1275–1279.

DOI: 10.1002/pssb.201046342

Google Scholar

[9] H. Werheit, A. Leithe-Jasper, T. Tanaka, H.W. Rotter, K.A. Schwetz, Journal of Solid State Chemistry 177 (2004) 575–579.

DOI: 10.1016/j.jssc.2003.04.005

Google Scholar

[10] T.L. Aselage, D.R. Tallant, J.H. Gieske, S.B. Van Deusen, R.G. Tissot, in: R. Freer (Ed.), The Physics and Chemistry of Carbides, Nitrides and Borides, Springer Netherlands, Dordrecht, 1990, p.97–111.

DOI: 10.1007/978-94-009-2101-6_7

Google Scholar

[11] J. Mazurowski, S. Lee, G. Ramseyer, P.A. Dowben, MRS Proc. 242 (1992) 637.

Google Scholar

[12] A.A. Ahmad, N.J. Ianno, P.G. Snyder, D. Welipitiya, D. Byun, P.A. Dowben, Journal of Applied Physics 79 (1996) 8643–8647.

DOI: 10.1063/1.362487

Google Scholar

[13] J. Berjonneau, G. Chollon, F. Langlais, J. Electrochem. Soc. 153 (2006) C795.

Google Scholar

[14] A.O. Sezer, J.I. Brand, Materials Science and Engineering: B 79 (2001) 191–202.

Google Scholar

[15] V. Cholet, R. Herbin, L. Vandenbulcke, Thin Solid Films 188 (1990) 143–155.

DOI: 10.1016/0040-6090(90)90200-w

Google Scholar

[16] D.N. Kevill, T.J. Rissmann, D. Brewe, C. Wood, Journal of Crystal Growth 74 (1986) 210–216.

DOI: 10.1016/0022-0248(86)90266-6

Google Scholar

[17] W. Norimatsu, K. Matsuda, T. Terasawa, N. Takata, A. Masumori, K. Ito, K. Oda, T. Ito, A. Endo, R. Funahashi, M. Kusunoki, Nanotechnology 31 (2020) 145711.

DOI: 10.1088/1361-6528/ab62cf

Google Scholar

[18] G. Ferro, Critical Reviews in Solid State and Materials Sciences 40 (2015) 56–76.

Google Scholar

[19] T.L. Aselage, R.G. Tissot, Journal of the American Ceramic Society 75 (1992) 2207–2212.

Google Scholar