Prevention of Bunched Basal Plane Dislocation Arrays in 4H-SiC PVT-Growth

Article Preview

Abstract:

To prevent arrays of basal plane dislocations (BPD) forming during grown 4H-SiC single crystals, the growth cell in physical vapor transport (PVT) growth was modified by adapting the temperature gradients, the seed attachment method and the seeding phase. The resulting reduction in stress was modeled numerically and the crystals were investigated by X-ray topography (XRT) and molten potassium hydroxide (KOH) etching. Due to these modifications, the formation of BPD arrays was completely suppressed.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] P. Wellmann, N. Ohtani, R. Rupp, Wide Bandgap Semiconductors for Power Electronics. 2021, Weinheim, Germany: Wiley-VCH.

DOI: 10.1002/9783527824724

Google Scholar

[2] A. Agarwal, H. Fatima, S. Haney and S.-H. Ryu, A New Degradation Mechanism in High-Voltage SiC Power MOSFETs, IEEE Electron Device Letters 28(7) (2007) 587-589.

DOI: 10.1109/led.2007.897861

Google Scholar

[3] V. Veliadis, H. Hearne, E.J. Stewart, M. Snook, W. Chang, J.D. Caldwell, H.C. Ha, N. El-Hinnawy, P. Borodulin, R.S. Howell, D. Urciuoli, A. Lelis and C. Scozzie, Degradation and Full Recovery in High-Voltage Implanted-Gate SiC JFETs Subjected to Bipolar Current Stress, IEEE Electron Device Letters 33(7) (2012) 952-954.

DOI: 10.1109/led.2012.2196674

Google Scholar

[4] M. Sonoda, T. Nakano, K. Shioura, N. Shinagawa and N. Ohtani, Structural characterization of the growth front of physical vapor transport grown 4H-SiC crystals using X-ray topography, J. Cryst. Growth 499 (2018) 24-29.

DOI: 10.1016/j.jcrysgro.2018.07.029

Google Scholar

[5] N. Ohtani, M. Katsuno, T. Fujimoto, M. Nakabayashi, H. Tsuge, H. Yashiro, T. Aigo, H. Hirano, T. Hoshino and W. Ohashi, Analysis of Basal Plane Bending and Basal Plane Dislocations in 4H-SiC Single Crystals, Jpn. J. Appl. Phys. 48(6) (2009).

DOI: 10.1143/jjap.48.065503

Google Scholar

[6] T. Nakano, N. Shinagawa, M. Yabu and N. Ohtani, Formation and multiplication of basal plane dislocations during physical vapor transport growth of 4H-SiC crystals, J. Cryst. Growth 516 (2019) 51-56.

DOI: 10.1016/j.jcrysgro.2019.03.027

Google Scholar

[7] B. Gao, K. Kakimoto, Three-Dimensional Modeling of Basal Plane Dislocations in 4H-SiC Single Crystals Grown by the Physical Vapor Transport Method, Crystal Growth and Design 14(3) (2014) 1272-1278.

DOI: 10.1021/cg401789g

Google Scholar

[8] J. Steiner, P.J. Wellmann, Impact of Mechanical Stress and Nitrogen Doping on the Defect Distribution in the Initial Stage of the 4H-SiC PVT Growth Process, Materials 15(5) (2022).

DOI: 10.3390/ma15051897

Google Scholar

[9] S. Nakashima, T. Kitamura, T. Mitani, H. Okumura, M. Katsuno and N. Ohtani, Raman scattering study of carrier-transport and phonon properties of4H−SiCcrystals with graded doping, Physical Review B 76(24) (2007).

DOI: 10.1103/physrevb.76.245208

Google Scholar

[10] M. Stockmeier, R. Muller, S.A. Sakwe, P.J. Wellmann and A. Magerl, On the lattice parameters of silicon carbide, J. Appl. Phys. 105(3) (2009).

DOI: 10.1063/1.3074301

Google Scholar

[11] E.K. Sanchez, J.Q. Liu, M. De Graef, M. Skowronski, W.M. Vetter and M. Dudley, Nucleation of threading dislocations in sublimation grown silicon carbide, J. Appl. Phys. 91(3) (2002) 1143-1148.

DOI: 10.1063/1.1428088

Google Scholar

[12] M. Arzig, U. Künecke, M. Salamon, N. Uhlmann and P.J. Wellmann, Influence of the growth conditions on the formation of macro-steps on the growth interface of SiC-Crystals, J. Cryst. Growth 576 (2021).

DOI: 10.1016/j.jcrysgro.2021.126361

Google Scholar

[13] M. Arzig, U. Künecke, M. Salamon, N. Uhlmann and P.J. Wellmann, Analysis of the Morphology of the Growth Interface as a Function of the Gas Phase Composition during the PVT Growth of Silicon Carbide, Materials Science Forum 1062 (2022) 89-93.

DOI: 10.4028/p-f58944

Google Scholar