Influence of Channel Length and Gate Oxide Thickness Variations in 3300 V 4H-SiC VDMOSFET

Article Preview

Abstract:

In this work, variations in the channel length and gate oxide thickness are studied for the design optimization of 3300 V 4H-SiC based VDMOSFETs. For this, a batch of 3 wafers was processed and tested for key device characteristics. The results indicate shorter channel length of 0.5 μm leads to an increase in the drain leakage current, thus affecting the breakdown voltage as well. The thinner gate oxide at 50 nm demonstrates better control of threshold voltage with no variations in the gate leakage current distribution as compared to 65 nm.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 360)

Pages:

183-187

Citation:

Online since:

August 2024

Export:

Share:

Citation:

* - Corresponding Author

[1] B. J. Baliga, Fundamentals of Power Semiconductor Devices. Cham: Springer International Publishing, 2019.

DOI: 10.1007/978-3-319-93988-9

Google Scholar

[2] H. L. R. Maddi et al., 'The Road to a Robust and Affordable SiC Power MOSFET Technology', Energies, vol. 14, no. 24, p.8283, Dec. 2021.

DOI: 10.3390/en14248283

Google Scholar

[3] D. Xing et al., '3.3-kV SiC MOSFET Performance and Short-Circuit Capability', in 2020 IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia), Suita, Japan: IEEE, Sep. 2020, p.1–6.

DOI: 10.1109/WiPDAAsia49671.2020.9360270

Google Scholar

[4] A. Gendron-Hansen et al., 'Commercialization of Highly Rugged 4H-SiC 3300 V Schottky Diodes and Power MOSFETs', MSF, vol. 1004, p.822–829, Jul. 2020.

DOI: 10.4028/www.scientific.net/MSF.1004.822

Google Scholar

[5] M. Noborio, Y. Kanzaki, J. Suda, and T. Kimoto, 'Experimental and Theoretical Investigations on Short-Channel Effects in 4H-SiC MOSFETs', IEEE Trans. Electron Devices, vol. 52, no. 9, p.1954–1962, Sep. 2005.

DOI: 10.1109/TED.2005.854269

Google Scholar

[6] D. Kim, N. Yun, S. Y. Jang, A. J. Morgan, and W. Sung, 'Channel Design Optimization for 1.2-kV 4H-SiC MOSFET Achieving Inherent Unipolar Diode 3 rd Quadrant Operation', IEEE J. Electron Devices Soc., vol. 10, p.495–503, 2022.

DOI: 10.1109/JEDS.2022.3185526

Google Scholar

[7] T. Liu, S. Zhu, A. Salemi, D. Sheridan, M. H. White, and A. K. Agarwal, 'JFET Region Design Trade-Offs of 650 V 4H-SiC Planar Power MOSFETs', Solid State Electronics Letters, vol. 3, p.53–58, Dec. 2021.

DOI: 10.1016/j.ssel.2021.12.001

Google Scholar

[8] S. Zhu, T. Liu, J. Fan, H. L. R. Maddi, M. H. White, and A. K. Agarwal, 'Effects of JFET Region Design and Gate Oxide Thickness on the Static and Dynamic Performance of 650 V SiC Planar Power MOSFETs', Materials, vol. 15, no. 17, p.5995, Aug. 2022.

DOI: 10.3390/ma15175995

Google Scholar

[9] X. Chen et al., 'Different JFET Designs on Conduction and Short-Circuit Capability for 3.3 kV Planar-Gate Silicon Carbide MOSFETs', IEEE J. Electron Devices Soc., vol. 8, p.841–845, 2020.

DOI: 10.1109/JEDS.2020.3010951

Google Scholar

[10] K. Tachiki, T. Ono, T. Kobayashi, and T. Kimoto, 'Short-Channel Effects in SiC MOSFETs Based on Analyses of Saturation Drain Current', IEEE Trans. Electron Devices, vol. 68, no. 3, p.1382–1384, Mar. 2021.

DOI: 10.1109/TED.2021.3053518

Google Scholar

[11] M. Rahimo, I. Nistor, and D. Green, 'Suppression of Short Channel Effects for a SiC MOSFET Based on the S-MOS Cell Concept', KEM, vol. 945, p.83–89, May 2023.

DOI: 10.4028/p-g4w5h5

Google Scholar