On the TCAD Modeling of Non-Permanent Gate Current Increase during Short-Circuit Test in SiC MOSFETs

Article Preview

Abstract:

Under short-circuit (SC) testing SiC MOSFETs exhibit an exceptional increase of gate current (100’s mA) which is not observed in their Si counterparts. Electro-thermal TCAD simulations are capable to accurately mimic all the details of measured gate current waveforms (iG) by capturing multiple physical mechanisms. One of these mechanisms is the thermionic or Schottky emission effect occurring at extreme temperatures (>1300K) for relatively thick gate oxides (>40nm). For the first time, it is proven that TCAD tunneling models, recommended for very thin oxides (<3nm), are suitable to reproduce the thermionic effect and predict iG in SiC MOSFETs under SC test.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 360)

Pages:

95-101

Citation:

Online since:

August 2024

Export:

Share:

Citation:

* - Corresponding Author

[1] K. Lee et al., Device simulation modeling of 1200 V SiC MOSFETs, Proceedings PCIM (2017) 1-6.

Google Scholar

[2] T. Hatakeyama, et al., Impact ionization coefficients of 4H silicon carbide, Applied Physics Letters (2004) 1380-1382.

DOI: 10.1063/1.1784520

Google Scholar

[3] A. Tsibizov et al., Accurate Temperature Estimation of SiC Power MOSFETs Under Extreme Operating Conditions, IEEE Transactions on Power Electronics (2019) 1855-1865.

DOI: 10.1109/tpel.2019.2917221

Google Scholar

[4] L. Maresca et al., Influence of the SiC/SiO 2 SiC MOSFET interface traps distribution on C-V measurements evaluated by TCAD simulations, IEEE Journal of Emerging and Selected Topics in Power Electronics (2019) 2171-2179.

DOI: 10.1109/jestpe.2019.2940143

Google Scholar

[5] T. Kikuchi, M. Ciappa, A new two-dimensional TCAD model for threshold instability in silicon carbide MOSFETs, Microelectronics Reliability (2013) 9-11.

DOI: 10.1016/j.microrel.2013.07.031

Google Scholar

[6] A. Sakai et al., Impacts of the 4H-SiC/SiO2 interface states on the switching operation of power MOSFETs, Proceedings SISPAD (2015) 64-67.

Google Scholar

[7] Z. Tong et al., Origins of Soft-Switching Coss Losses in SiC Power MOSFETs and Diodes for Resonant Converter Applications, IEEE Journal of Emerging and Selected Topics in Power Electronics (2020) 4082-4095.

DOI: 10.1109/jestpe.2020.3034345

Google Scholar

[8] B. Kakarla et al., Short circuit robustness and carrier lifetime in silicon carbide MOSFETs, Proceedings of ISPSD (2020) 234-237

DOI: 10.1109/ispsd46842.2020.9170121

Google Scholar

[9] S. Kochoska et al., The Impact of Different Test Methodologies for Short-circuit Ruggedness of SiC MOSFETs, Proceedings PCIM Europe (2023) 1-8.

Google Scholar

[10] J. Victory et al., Simulation Challenges of SiC MOSFET Switching Performance and Reliability, accepted to be presented at SISPAD (2013).

Google Scholar

[11] F. Boige, F. Richardeau, Gate leakage-current analysis and modelling of planar and trench power SiC MOSFET devices in extreme short-circuit operation, Microelectronics Reliability (2017) 532-538.

DOI: 10.1016/j.microrel.2017.06.084

Google Scholar

[12] C. Unger, M. Pfost, Particularities of the Short-Circuit Operation and Failure Modes of SiC-MOSFETs, IEEE Journal of Emerging and Selected Topics in Power Electronics (2021) 6432-6440.

DOI: 10.1109/jestpe.2021.3053127

Google Scholar

[13] S. Kochoska et al., Gate Current Peaks Due to Cgd Overcharge in SiC MOSFETs Under Short-Circuit Test, Proceedings of ISPSD (2023) 246-249.

DOI: 10.1109/ispsd57135.2023.10147438

Google Scholar

[14] F. Boige, D. Trémouilles, F. Richardeau, Physical Origin of the Gate Current Surge During Short-Circuit Operation of SiC MOSFET, IEEE Electron Device Letters (2019) 666-669.

DOI: 10.1109/led.2019.2896939

Google Scholar

[15] Sentaurus TCAD Tools Suite. T-2022.03. Synopsys.

Google Scholar

[16] J.C. Ranuárez, M.J. Deen, C.H. Chen, A review of gate tunneling current in MOS devices, Microelectronics reliability (2006) 1939-1956.

DOI: 10.1016/j.microrel.2005.12.006

Google Scholar

[17] A. Schenk, G. Heiser, Modeling and simulation of tunneling through ultra-thin gate dielectrics, Journal of Applied Physics (1997) 7900–7908.

DOI: 10.1063/1.365364

Google Scholar

[18] M. Ieong et al., Comparison of Raised and Schottky Source/Drain MOSFETs Using a Novel Tunneling Contact Model, Proceedings of IEDM (1998) 733–736.

DOI: 10.1109/iedm.1998.746461

Google Scholar

[19] Datasheet information on https://www.onsemi.com/pdf/datasheet/nth4l080n120sc1-d.pdf

Google Scholar

[20] D. Kim, A. J. Morgan, N. Yun, W. Sung, A. Agarwal, R. Kaplar, Non-Isothermal Simulations to Optimize SiC MOSFETs for Enhanced Short-Circuit Ruggedness, Proceedings of IRPS (2020) 1-6.

DOI: 10.1109/irps45951.2020.9128324

Google Scholar

[21] F. Boige, F. Richardeau, S. Lefebvre, M. Cousineau, SiC power MOSFET in short-circuit operation: Electro-thermal macro-modelling combining physical and numerical approaches with circuit-type implementation, Mathematics and Computers in Simulation (2019) 375-386.

DOI: 10.1016/j.matcom.2018.09.020

Google Scholar