Punching of Prismatic Dislocation Loops from Inclusions in 4H-SiC Wafers

Article Preview

Abstract:

Indentation behavior induced by the presence of foreign inclusions in a PVT-grown 4H-SiC wafer is investigated through synchrotron X-ray topography, which revealed the generation of dislocation arrays from the inclusion center along six <11-20> directions. Grazing-incident topographs shows these dislocation arrays exhibit contrast configurations of opposite-signed TED pairs or BPD segments. This correlates with dislocation loops generated due to prismatic punching, and dislocation configuration variation is dependent on the position of prismatic loops with respect to the wafer surface. The stress induced by the inclusion embedded in the 4H-SiC matrix is estimated from the difference in the thermomechanical properties, as the crystal is cooled from the growth temperature.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] F. Seitz, Prismatic Dislocations and Prismatic Punching in Crystals, Phys. Rev. 79 (1950) 723-724.

DOI: 10.1103/physrev.79.723

Google Scholar

[2] D.A. Jones, J.W. Mitchell, Observations on helical dislocations in crystals of silver chloride, Philos. Mag.-J. Theor. Exp. Appl. Phys 3 (1958) pp.1-7.

Google Scholar

[3] L.M. Brown, G.R. Woolhouse, The loss of coherency of precipitates and the generation of dislocations, Philos. Mag.-J. Theor. Exp. Appl. Phys 21 (1970) 329-345.

Google Scholar

[4] M.F. Ashby, L. Johnson, On the generation of dislocations at misfitting particles in a ductile matrix, Philos. Mag.-J. Theor. Exp. Appl. Phys 20 (1969) 1009-1022.

DOI: 10.1080/14786436908228069

Google Scholar

[5] G.C. Weatherly, Loss of coherency of growing particles by the prismatic punching of dislocation loops, Philos. Mag.-J. Theor. Exp. Appl. Phys. 17 (1968) 791-799.

DOI: 10.1080/14786436808223030

Google Scholar

[6] Y. Flom, R.J. Arsenault, Deformation of SiC/Al Composites. JOM 38 (1986) 31-34.

DOI: 10.1007/bf03258711

Google Scholar

[7] M. Wada, J. Suzuki, Characterization of Te Precipitates in CdTe Crystals, Jpn. J. Appl. Phys. 27 (1988) L972.

DOI: 10.1143/jjap.27.l972

Google Scholar

[8] A. Giannattasio, A., S. Senkader, R.J. Falster, P.R. Wilshaw, The role of prismatic dislocation loops in the generation of glide dislocations in Cz-silicon, Comput. Mater. Sci. 30 (2004) 131-136.

DOI: 10.1016/j.commatsci.2004.01.021

Google Scholar

[9] H. Yu, A.C.F. Cocks, E. Tarleton, Formation of prismatic dislocation loops during unloading in nanoindentation, Scr. Mater. 189 (2020) 112-116.

DOI: 10.1016/j.scriptamat.2020.07.062

Google Scholar

[10] W.W. Webb, C.E. Hayes, Dislocations and plastic deformation of ice, Philos. Mag.-J. Theor. Exp. Appl. Phys. 16 (1967) 909-925.

DOI: 10.1080/14786436708229684

Google Scholar

[11] Q.Y. Cheng, H.Y. Peng, S.S. Hu, Z.Y. Chen, Y. Liu, B. Raghothamachar, M. Dudley, Ray-Tracing Simulation Analysis of Effective Penetration Depths on Grazing Incidence Synchrotron X-Ray Topographic Images of Basal Plane Dislocations in 4H-SiC Wafers, Mater. Sci. Forum 1062 (2022) 366-370.

DOI: 10.4028/p-2kzz01

Google Scholar

[12] X.R. Huang, M. Dudley, W.M. Vetter, W. Huang, W. Si, C.H. Carter Jr, Superscrew dislocation contrast on synchrotron white-beam topographs: an accurate description of the direct dislocation image, J. Appl. Crystallogr. 32 (1999) 516-524.

DOI: 10.1107/s0021889899002939

Google Scholar

[13] X.R. Huang, M. Dudley, W.M. Vetter, W. Huang, S. Wang, C.H. Carter Jr, Contrast Mechanism in Superscrew Dislocation Images on Synchrotron Back-Reflection Topographs, MRS Proceedings 524 (1998) 71.

DOI: 10.1557/proc-524-71

Google Scholar

[14] M. Dudley, X.R. Huang, W. Huang, Assessment of orientation and extinction contrast contributions to the direct dislocation image, J. Phys. D Appl. Phys. 32 (1999) A139.

DOI: 10.1088/0022-3727/32/10a/329

Google Scholar

[15] F. Fujie, H. Peng, T. Ailihumaer, B. Raghothamachar, M. Dudley, S. Harada, M. Tagawa, T. Ujihara, Synchrotron X-ray topographic image contrast variation of screw-type basal plane dislocations located at different depths below the crystal surface in 4H-SiC, Acta Mater. 208 (2021) 116746.

DOI: 10.1016/j.actamat.2021.116746

Google Scholar

[16] H. Peng, T. Ailihumaer, F. Fujie, Z. Chen, B. Raghothamachar, M. Dudley, Influence of surface relaxation on the contrast of threading edge dislocations in synchrotron X-ray topographs under the condition of g . b = 0 and g . b x l = 0, J. Appl. Crystallogr. 54 (2021) 439-443.

DOI: 10.1107/s160057672100025x

Google Scholar

[17] T. Ailihumaer, H. Peng, F. Fujie, B. Raghothamachar, M. Dudley, S. Harada, T. Ujihara, Surface relaxation and photoelectric absorption effects on synchrotron X-ray topographic images of dislocations lying on the basal plane in off-axis 4H-SiC crystals, Mater. Sci. Eng. B 271 (2021) 115281.

DOI: 10.1016/j.mseb.2021.115281

Google Scholar

[18] Q.Y. Cheng, H.Y. Peng, Z.Y. Chen, S. Hu, Y. Liu, B. Raghothamachar, M. Dudley, Effective Penetration Depth Investigation for Frank Type Dislocation (Deflected TSDs/TMDs) on Grazing Incidence Synchrotron X-Ray Topographs of 4H-SiC Wafers. Defect and Diffusion Forum 426 (2023) 57-64.

DOI: 10.4028/p-h6l351

Google Scholar

[19] N.F. Mott, F.R.N. Nabarro, An attempt to estimate the degree of precipitation hardening, with a simple model, Proc. Phys. Soc. 52 (1940) 86.

DOI: 10.1088/0959-5309/52/1/312

Google Scholar

[20] P.J. Wellmann, Review of SiC crystal growth technology, Semicond. Sci. Technol. 33 (2018) 103001.

DOI: 10.1088/1361-6641/aad831

Google Scholar

[21] P. Pirouz, M. Zhang, J.L. Demenet, H.M. Hobgood, Transition from brittleness to ductility in SiC, J. Phys. Condens. Matter 14 (2002) 12929.

DOI: 10.1088/0953-8984/14/48/335

Google Scholar

[22] A.G. Worthing, Physical Properties of Well Seasoned Mo and Ta as a Function of Temperature, Phys. Rev. 28 (1926) 1331-1331.

DOI: 10.1103/physrev.28.1331.2

Google Scholar

[23] Z. Li, R.C. Bradt, Thermal expansion of the hexagonal (4H) polytype of SiC, J. Appl. Phys. 60 (1986) 612-614.

DOI: 10.1063/1.337456

Google Scholar

[24] R.J. Arsenault, N. Shi, Dislocation generation due to differences between the coefficients of thermal expansion, Mater. Sci. Eng. 81 (1986) 175-187.

DOI: 10.1016/0025-5416(86)90261-2

Google Scholar

[25] D. Hull, D.J. Bacon, Chapter 8 - Origin and Multiplication of Dislocations, in: D. Hull, D.J. Bacon (Eds.), Introduction to Dislocations (Fifth Edition), Butterworth-Heinemann, Oxford, 2011, pp.157-169.

DOI: 10.1016/b978-0-08-096672-4.00008-6

Google Scholar

[26] W.W. Xu, F. Xia, L. Chen, M. Wu, T. Gang, Y. Huang, High-temperature mechanical and thermodynamic properties of silicon carbide polytypes, J. Alloys Compd. 768 (2018) 722-732.

DOI: 10.1016/j.jallcom.2018.07.299

Google Scholar

[27] J.P. Hirth, J. Lothe, Nucleation of Glide Loops, in: Theory of dislocations (2nd edition), John Wiley & Sons, Inc., New York, 1982, pp.757-760.

Google Scholar

[28] T. Kinoshita, S. Munekawa, S.I. Tanaka, Effect of grain boundary segregation on high-temperature strength of hot-pressed silicon carbide, Acta Mater. 45 (1997) 801-809.

DOI: 10.1016/s1359-6454(96)00179-6

Google Scholar