Comparative Characteristics of GaAs and InAs Langmuir Evaporation - Monte Carlo Simulation

Article Preview

Abstract:

The process of GaAs and InAs substrates high-temperature annealing under the Langmuir evaporation conditions is studied by Monte Carlo simulation. The temperature range of gallium arsenide and indium arsenide congruent and incongruent evaporation are determined. It was demonstrated that the congruent evaporation temperature Tc is sensitive to the vicinal surface terrace width. The decrease of the terrace width results in a decrease in the congruent evaporation temperature. The Ga and In diffusion lengths along the (111)A and (111)B surfaces at congruent temperatures are estimated. The surface morphology transformation kinetic during high-temperature annealing is analyzed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

27-32

Citation:

Online since:

September 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.Y. Lou, G.A. Somorjai, Studies of the vaporization mechanism of gallium arsenide single crystals, J. of Chem. Phys. 55 (1971) 4554-4565.

DOI: 10.1063/1.1676789

Google Scholar

[2] B. Goldshtein, D.J. Stozak, V.S. Ban, Langmuir evaporation from the (100), (111A) and (111B) faces of GaAs, Surf. Sci. 57 (1976) 733-740.

DOI: 10.1016/0039-6028(76)90358-7

Google Scholar

[3] S. Kanjanachuchai, C. Euaruksakul, Self-Running Ga Droplets on GaAs (111)A and (111)B Surfaces, ACS Appl. Mater. Interfaces 5 (2013) 7709-7713.

DOI: 10.1021/am402455u

Google Scholar

[4] Ju. Huhryanski, L. Veremjanina, I. Kombarova, I. Nikishina, О. Sysoev, Kinetics of Langmuir evaporation of indium phosphide and arsenide components, J. Phys. Chem. 71 (1997) 870-874.

Google Scholar

[5] S. Kanjanachuchai, P. Photongkam, Dislocation-guided self-running droplets, Cryst. Growth Des. 15 (2015) 14-19.

DOI: 10.1021/cg5013704

Google Scholar

[6] J. Jian-yun Shen, C. Chatillon, Thermodynamic calculations of congruent vaporization in III–V systems; Applications to the In-As, Ga-As and Ga-In-As systems, J. Cryst. Growth 106 (1990) 543-552.

DOI: 10.1016/0022-0248(90)90028-j

Google Scholar

[7] M. Panish, J. Arthur, Phase equilibria and vapor pressures of the system In+P, J. Chemical Thermodynamics 2 (1970) 299-318.

DOI: 10.1016/0021-9614(70)90001-7

Google Scholar

[8] А.N. Nesmeyanov, The vapor pressure of the chemical elements, Moscow, 1961, pp.204-206 (in rus.).

Google Scholar

[9] C. Pupp, J. Murray, R. Pottie, Vapour pressures of arsenic over InAs(c) and GaAs(c). The enthalpies of formation of InAs(c) and GaAs(c), J. Chem. Thermodynamics 6 (1974) 123-134.

DOI: 10.1016/0021-9614(74)90255-9

Google Scholar

[10] A. Zverev, C. Zinchenko, N. Shwartz, Z. Yanovitskaja, A Monte Carlo simulation of the processes of nanostructures growth: The time-scale event-scheduling algorithm, Nanotech. in Russia 4 (2009) 215-224.

DOI: 10.1134/s1995078009030094

Google Scholar

[11] A.A. Spirina, A.G. Nastovjak, S.V. Usenkov, N.L. Shwartz, Lattice Monte Carlo model of Langmuir evaporation of AIIIBV semiconductors: submitted to Journal Computational Technologies (in russian) (2018).

DOI: 10.1134/s1063782618160340

Google Scholar

[12] M. Vasilenko, I. Neizvestny, N. Shwartz, Formation of GaAs nanostructures by droplet epitaxy — Monte Carlo simulation, Comput. Mat. Sci. 102 (2015) 286-292.

DOI: 10.1016/j.commatsci.2015.02.032

Google Scholar

[13] R.N. Hall, Solubility of III–V compound Semiconductors in column III liquids, J. Electrochem. Soc. 110 (1963) 385-388.

DOI: 10.1149/1.2425770

Google Scholar

[14] A.A. Spirina, A.G. Nastovjak, N.L. Shwartz, Influence of GaAs substrates properties on the congruent evaporation temperature, J. Phys.: Conf. Ser. 993 (2018) 012011.

DOI: 10.1088/1742-6596/993/1/012011

Google Scholar

[15] H.C. Gatos, M.C. Lavine, Characteristics of the {111} Surfaces of the III-V Intermetallic Compounds, J. Electrochem. Society, 107 (1960) 427-433.

DOI: 10.1149/1.2427712

Google Scholar