A Novel Micromechanical Resonator Using Two-Dimensional Phononic Crystal Slab

Article Preview

Abstract:

Two-dimensional (2-D) Silicon phononic crystal (PnC) slab of a square array of cylindrical air holes in a 10μm thick free-standing silicon plate with line defects is characterized as a cavity-mode PnC resonator. Piezoelectric aluminum nitride (AlN) film is deployed as the inter-digital transducers (IDT) to transmit and detect acoustic waves, thus making the whole microfabrication process CMOS-compatible. Both the band structure of the PnC and the transmission spectrum of the proposed PnC resonator are analyzed and optimized using finite element method (FEM). The measured quality factor (Q factor) of the microfabricated PnC resonator is over 1,000 at its resonant frequency of 152.46MHz. The proposed PnC resonator shows promising acoustic resonance characteristics for RF communications and sensing applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

195-198

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. M. Lavasani, R. Abdolvand, and F. Ayazi, A 500MHz Low Phase-Noise A1N-on-Silicon Reference Oscillator, " in Custom Integrated Circuits Conference, 2007. CICC , 07. IEEE, 2007, pp.599-602.

DOI: 10.1109/cicc.2007.4405803

Google Scholar

[2] C. T. C. Nguyen, MEMS technology for timing and frequency control, Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 54, pp.251-270, (2007).

DOI: 10.1109/tuffc.2007.240

Google Scholar

[3] G. Piazza, P. J. Stephanou, and A. P. Pisano, Single-chip multiple-frequency AlN MEMS filters based on contour-mode piezoelectric resonators, Journal of Microelectromechanical Systems, vol. 16, pp.319-328, Apr (2007).

DOI: 10.1109/jmems.2006.889503

Google Scholar

[4] S. Mohammadi, A. A. Eftekhar, A. Khelif, W. D. Hunt, and A. Adibi, Evidence of large high frequency complete phononic band gaps in silicon phononic crystal plates, Applied Physics Letters, vol. 92, Jun (2008).

DOI: 10.1063/1.2939097

Google Scholar

[5] T. T. Wu, L. C. Wu, and Z. G. Huang, Frequency band-gap measurement of two-dimensional air/silicon phononic crystals using layered slanted finger interdigital transducers, Journal of Applied Physics, vol. 97, May (2005).

DOI: 10.1063/1.1893209

Google Scholar

[6] I. El-Kady, R. H. Olsson, and J. G. Fleming, Phononic band-gap crystals for radio frequency communications, Applied Physics Letters, vol. 92, Jun (2008).

DOI: 10.1063/1.2938863

Google Scholar

[7] R. H. Olsson, I. F. El-Kady, M. F. Su, M. R. Tuck, and J. G. Fleming, Microfabricated VHF acoustic crystals and waveguides, Sensors and Actuators a-Physical, vol. 145, pp.87-93, Jul-Aug (2008).

DOI: 10.1016/j.sna.2007.10.081

Google Scholar

[8] K. Nai-Kuei, Z. Chengjie, and G. Piazza, Demonstration of inverse acoustic band gap structures in AlN and integration with piezoelectric contour mode wideband transducers, in Frequency Control Symposium, 2009 Joint with the 22nd European Frequency and Time forum. IEEE International, 2009, pp.10-13.

DOI: 10.1109/freq.2009.5168133

Google Scholar

[9] M. F. Su, R. H. Olsson, Z. C. Leseman, and I. El-Kady, Realization of a phononic crystal operating at gigahertz frequencies, Applied Physics Letters, vol. 96, Feb (2010).

DOI: 10.1063/1.3280376

Google Scholar

[10] A. Khelif, A. Choujaa, B. Djafari-Rouhani, M. Wilm, S. Ballandras, and V. Laude, Trapping and guiding of acoustic waves by defect modes in a full-band-gap ultrasonic crystal, Physical Review B, vol. 68, p.214301, (2003).

DOI: 10.1103/physrevb.68.214301

Google Scholar

[11] S. Mohammadi, A. A. Eftekhar, W. D. Hunt, and A. Adibi, High-Q micromechanical resonators in a two-dimensional phononic crystal slab, Applied Physics Letters, vol. 94, Feb (2009).

DOI: 10.1063/1.3078284

Google Scholar

[12] R. H. Olsson and I. El-Kady, Microfabricated phononic crystal devices and applications, Measurement Science & Technology, vol. 20, Jan (2009).

DOI: 10.1088/0957-0233/20/1/012002

Google Scholar

[13] S. Mohammadi, A. A. Eftekhar, A. Khelif, H. Moubchir, R. Westafer, W. D. Hunt, and A. Adibi, Complete phononic bandgaps and bandgap maps in two-dimensional silicon phononic crystal plates, Electronics Letters, vol. 43, pp.898-899, (2007).

DOI: 10.1049/el:20071159

Google Scholar